
A practical Introduction to UNICORE

Mathias Dalheimer and Dirk Petry
Fraunhofer Institut für Techno- und Wirtschaftsmathematik,

Kaiserslautern, Germany
{dalheimer|petryd}@itwm.fhg.de

21 March 2006
Version 1.0

Contents

1 Introduction 2

2 Architecture Overview 3
2.1 UNICORE Client . 3
2.2 Gateway . 6
2.3 Network Job Supervisor . 7
2.4 Target System Interface . 9
2.5 Drawbacks and missing features . 9

3 The UNICORE Installation 10
3.1 Assumptions . 10

3.1.1 Network Layout . 10
3.2 Certificates . 10
3.3 Creating your own certificates . 12
3.4 Downloading the necessary software 14
3.5 Installing the Gateway . 14

3.5.1 Build the software . 14
3.5.2 Set up certificates and add unicore user 15
3.5.3 Edit the file “gateway.properties” 15
3.5.4 Edit the file “connections” 16
3.5.5 Set up log file directory and file permissions 16
3.5.6 Add Gateway to your UNICORE site list 16
3.5.7 Test . 17

1

1 INTRODUCTION

3.6 Installing an NJS . 17
3.6.1 Build the software and set up directories 17
3.6.2 Edit file “njs.properties” . 18
3.6.3 Edit file “njs.idb” . 19
3.6.4 Install the UUDB . 19
3.6.5 Create local worker user and add an external user to the

UUDB . 20
3.6.6 Adjusting njs admin . 20

3.7 Installing a TSI . 20
3.7.1 Build the software . 20
3.7.2 Edit file “/usr/local/unicore/tsi/conf/tsi.properties” 21

3.8 Starting the system . 22
3.8.1 Testing the incarnation database 22

3.9 Shutting down the system . 23
3.10 Adding a second Vsite . 23

3.10.1 Edit file “njs.properties” for the second Vsite 23
3.10.2 Edit file “connections” for the Gateway 24
3.10.3 Start-up . 24

3.11 Enabling trust between two Vsites 24
3.12 Adding a software resource . 25

3.12.1 Example: POV-Ray . 25

1 Introduction

The UNICORE system [1] was developed in Germany in order to simplify the
access to supercomputing resources. UNICORE is short for ”UNIform access to
COmputing REsources”: The users can use a simple client to access computing
resources, instead of obtaining a shell login, transfering the files to the target
machine manually, and starting the job using the site-specific commands. The
UNICORE software is available from Sourceforge under the BSD license [2].
With UNICORE, the provider of a resource can provide an abstract way of ac-
cessing its resources: Since the UNICORE system abstracts from different batch
systems, it is easy for a site administrator to wrap different installations in a com-
mon interface. In the Fraunhofer Resource Grid, we run several sites using the
UNICORE middleware.
Although there are some documents describing the UNICORE components in great
detail, we have not found a guide that helps the administrator to get started.
With this text, we hope to close this gap in the UNICORE documentation. In
the first part, we will present the architecture and general information we think
a UNICORE site admin should know. The second part is a step-by-step guide

2

2 ARCHITECTURE OVERVIEW

through an example installation as we have it running in the Fraunhofer Resource
Grid. Please note that you should not use this configuration as-is in a production
environment: since external users are executing programs, you should use auditing
techniques and harden your system. These security considerations are out of the
scope of this document.
Although the second part contains detailed steps for the UNICORE installation,
you should have a good understanding of Linux and public key infrastructures [3]1.
If you find any mistakes in this document, please contact the authors.

2 Architecture Overview

The UNICORE system consists of several components which interact over the
network, see figure 1: A provider site is called Usite. The Usite in this example
consists of two resources, called Vsites. The user uses the UNICORE client [4] to
access the resources. All connections need to pass the Gateway [7], which authen-
ticates the user and routes the connections to one of the Network Job Supervisors
(NJS) [8]. The NJS uses the Incarnation Database (IDB) [10] to map jobs on the
local system. When the user is authorized as described in the UNICORE User
Database, the NJS forwards the job to the Target System Interface (TSI) [8]. The
TSI in turn uses the local resource management system of the resource, usually a
batch system, to submit the job. In the following sections, we will investigate the
components further.

2.1 UNICORE Client

The client [4] is a GUI for users that provides access to the system. It is im-
plemented in Java and therefore available on many platforms. A user can define
jobs within the client, and use it to submit the job. During job execution, the job
can be monitored and canceled. After the job terminated, the client allows the
download of the results.
The client can be used to define jobs composed of several subtasks, see figure 2. A
simple workflow engine allows the user to specify loops, conditions and sequences.
Each job needs to be assigned to a resource. If data transfers are needed, they can
be modeled explicitly or handled implicitly by the UNICORE system.
For certain applications like Fluent (see figure 3) or Nastran, application-specific
plugins are available [2]. It is also possible to integrate custom plugins into the
client. This way, the usage of applications can be simplified for the end-user. We
will introduce a plugin for the Povray raytracer at the end of this guide.

1For a quick introduction, please refer to http://en.wikipedia.org/wiki/X.509

3

2 ARCHITECTURE OVERVIEW 2.1 UNICORE Client

Client

Gateway

TSI

NJS

Vsite A Vsite B

Firewall

IDB

UUDB

TSI

NJS
IDB

UUDB

Internet

Usite

NJS: Network Job Supervisor
TSI: Target System Interface
IDB: Incarnation Database
UUDB: Unicore User Database

Figure 1: Example of a simple UNICORE infrastructure. A user can access two
resources at the providers site.

4

2 ARCHITECTURE OVERVIEW 2.1 UNICORE Client

Figure 2: The workflow editor tab allows the modeling of complex jobs, composed
of several actions. The user can embed subtasks in a workflow which will then be
executed.

Figure 3: The client with the fluent plugin configuration page: the user doesn’t
need to specify how to execute fluent but instead focusses on fluent’s parameters.

5

2 ARCHITECTURE OVERVIEW 2.2 Gateway

The client also handles the user authentication: the user only needs to import her
X.509 certificates into the client keystore. During startup, the user needs to unlock
the keystore, making her personal keys available to the client for the duration of
the session. The client connections are encrypted using TLS, allowing the gateway
to authenticate the connection using the user’s X.509 certificates. From the user’s
viewpoint, the UNICORE client provides a single sign-on to the grid resources. In
addition, all jobs are signed with the user’s private key to prevent tampering.
During the execution of a job, there is no need for the user to stay online. Once
a job is submitted, no interaction with the executing resources is needed since the
complete workflow has been defined during job composition. As a drawback, it is
also not possible to interfere with the job once it has been submitted - except for
querying the state of subtasks and the cancelation of the whole job. Once the job
has terminated, the client allows the download of the result files. These are stored
on the resources until the user deletes them manually.
You can find more information about the client in the UNICORE client user man-
ual [4]. If you want to try the client, we suggest you follow the instructions of the
UNICORE Test Grid [5]. This site offers a free trial testbed that allows you to
explore the possibilities of UNICORE without the need for a Usite setup.

2.2 Gateway

The gateway [7] provides access to a UNICORE site (Usite). A provider typically
uses a single gateway to provide access to all his resources. The gateway receives
incoming client connections and authenticates them. The administrator can select
several trustworthy CAs, and users with certificates from one of these CAs will be
authorized to connect to the gateway.
On the other side, the different Vsites connect to the gateway, waiting for user
requests. It is possible to connect Vsites statically, but also dynamically. After
the client has been authenticated, the gateway provides more information about
the available systems to the client, i.e. the NJS that have registered with the
gateway. When the client communicates with a NJS behind the gateway, the
client sends the traffic to the gateway which in turn forwards it to the target NJS.
UNICORE uses the UNICORE Protocol Layer (UPL) for all network communi-
cation [6]. This communication includes the Abstract Job Object (AJO), which
describes the DAG and the subtasks of the job. In addition, all file transfers
are encapsulated. These data types are sent over an encrypted TLS connection,
therefore all data is secured, see figure 4
The gateway reduces the network complexity significantly: there is only one port
a client needs to connect to. The Vsites are independent of the gateway, allowing
arbitrary network layouts behind the gateway. For a Usite to provide access to

6

2 ARCHITECTURE OVERVIEW 2.3 Network Job Supervisor

Transport Layer Security (TLS)

Header
Data

Packetized Data

Figure 4: The UNICORE Protocol Layer (UPL) is based on a TLS-secured trans-
port. The headers are used to signal the request type, while the data layer provides
synchronous, the packetized data layer asynchronous messaging.

its resources over the internet, the firewall must allow connections to exactly one
port.
You can find more information about the UNICORE gateway in the gateway
documentation [7].

2.3 Network Job Supervisor

The Network Job Supervisor (NJS) [8] can be seen as an abstraction of a resource.
It receives the Abstract Job Objects and concretizes them using the Incarnation
Database (IDB) [10]. Using the UNICORE User Database (UUDB) [9], the NJS
determines the user to use to start the job.
The UUDB stores the public keys of the users that have authorization to use the
system. In addition, the UUDB allows the administrator to specify which local user
will be used for the execution. This is the authorization database in UNICORE:
The UUDB maps remote users to local users, called Xlogin. Therefore, the access
rights of a remote user are the rights she has on the system as the user she is
mapped to. A system administrator needs to ensure the local user has only the
desired access rights on the system.
Before a user can submit a job to an NJS, the client ensures that the job re-
quirements such as available memory, installed software etc. are satisfied. The
definition of the NJS properties are made in the IDB: a simple text file that ad-
vertises the systems capabilities. The NJS provides the informations of the IDB
to the client as part of the initial resource query. When a job’s requirements are
not satisfied, the job cannot be submitted and the subtask icon goes red (as you
might have notices, this is the case in the figures 2 and 3). The job cannot be
submitted to the NJS. If the requirements are satisfied, the icon goes green and
the job is ready for submission.

7

2 ARCHITECTURE OVERVIEW 2.3 Network Job Supervisor

Therefore, the IDB represents the capabilities of the NJS. Please note that no
dynamic information like load, queue length or network bandwidth is stored in the
IDB, but only static information.
When an AJO is submitted to the NJS, it is signed with the users private key. In
order to verify the authenticity of the AJO, the NJS needs to look up the public
key of the user in the UUDB. If the authenticity is given, the AJO needs to be
concretized using the IDB: since the user cannot know where a binary, e.g. fluent,
is installed, she only describes the job using abstract terms (e.g. FLUENT). In the
IDB, those abstract terms are assigned to concrete values. This process is called
incarnation.
The IDB provides also the possibility to include shell commands in these assign-
ments. This provides a lot of flexibility for resource-specific command definitions.
An administrator can test a software installation, and add a software advertise-
ment to the IDB that is known to work. Please refer to section 3.12.1 (p. 25) for
an example IDB entry. Of course, a user might also choose to stage in binaries or
compile programs before execution.
An AJO is always submitted to one NJS. When the user specifies different execu-
tion locations for subtasks, the receiving NJS consigns the subtask to the respective
Vsites. UNICORE differentiates two different X.509 signatures for AJOs [6]:

1. The endorser is the entity creating the job, i.e. the user. The endorsement
determines how a job is executed at a Vsite.

2. The consigner is the entity submitting the job. This can be the user or an
NJS forwarding the job to a different site. In the latter case, the consignment
is necessary for the UPL layer connection verification: otherwise, the gateway
of the receiving site would have no means to authenticate the connection.

Connected to job arriving at the NJS are input and output files which need to be
stored. UNICORE distinguishes several file spaces [6]:

1. The Uspace is the job’s working directory. Initially empty, the input files are
stored here. During job execution, temporary and result files are added to
the directory. When the result files are moved to the outcome file space, all
remaining job files are deleted.

2. The Spool provides quasi-permanent storage for file transfers between jobs.

3. The Outcome is an area for result storage. The client can be used to retrieve
these files.

4. The file system of the Vsite is available to jobs as well. For example, it is
possible to use the Xlogin’s home directory for file storage between jobs.

8

2 ARCHITECTURE OVERVIEW 2.4 Target System Interface

When an AJO is received, the input files are also sent over the UPL. The NJS
dumps these files to the Uspace, using the TSI.
More information can be found in the NJS TSI documentation [8], the UUDB
readme [9] and the IDB documentation [10].

2.4 Target System Interface

The Target System Interface (TSI) [8] takes concrete job requests and executes
them on the target system, using the local user determined by the NJS. The TSI
consists of a Perl script for maximum portability. It provides a simple abstraction
of the target system. There are different TSI-Implementations available, e.g. to
interface to the usual unix environment or to a cluster’s batch system. The TSI
connects to the NJS using a plain-text TCP connection.
When a job needs to be executed, the input files are received along with the Xlogin.
The TSI then uses the local resource management system, e.g. Torque, to run the
job. It can also provide the state of a running job and notifies the NJS upon job
completion.
Beside various TSI implementations e.g. for Torque/Maui, Sun GridEngine and
Platform LSF, there is also a Fork-TSI available: It will start jobs using a simple
unix fork. This TSI can be used to connect small machines to the NJS.
You can find more information about the TSI in the NJS TSI documentation.

2.5 Drawbacks and missing features

Compared to other grid middlewares, there are two drawbacks:

1. There is no built-in resource broker: All subtasks need to be assigned to
resources manually, as described in section 2.1. There is an external project
called ”UNICORE Resource Broker” [2], and other projects will develop a
UNICORE broker.

2. Another lacking feature is sophisticated data handling: all files are staged
in and out. But it should be possible to integrate e.g. the Storage Resource
Broker (SRB) [11] into a job description, although we have no experience
with this yet. There is also a package called ”UniGrids ARFT” (Alternative
Reliable File Transfer) on the UNICORE sourceforge page. This package
seems to employ the Globus RFT protocol for file transfers in UNICORE.

9

3 THE UNICORE INSTALLATION

3 The UNICORE Installation

In the example described here, we will install one Gateway, one NJS, and one TSI,
i.e. one Usite and one Vsite. Adding additional Vsites follows exactly the same
steps as the installation of the first.
Section 3.11 then describes the special case of enabling one NJS to consign jobs to
a second NJS. And in section 3.12.1, we give an example of how to add a software
resource to the IDB.

3.1 Assumptions

The example installation described in the following sections was made on a stan-
dard Debian Linux system. Adapting it to other Linux distributions should, how-
ever, be straight forward.
In particular, we chose to use the group “staff” for the unicore user which may
not exist by default on other distributions. But you can easily add it using the
groupadd command or replace it in the example by a different group of your choice.
Otherwise, it is assumed that you have root access to the system where you would
like to install the server.

3.1.1 Network Layout

As described in section 2, the UNICORE system consists of several daemons that
interact over TCP connections. In this example installation, we use the network
layout as show in figure 5. We will not cover the setup of the firewall and the other
network components, but shortly describe the TCP connections UNICORE will
establish in our setup. The client connects to the gateway on port 4004, which is
the only port the firewall needs to allow access to. The gateway expects a NJS
listening on port 4444 on usite and on port 4445 on testmachine1. The TSI-NJS
communication needs two TCP connections: The TSI connects to the NJS on port
4666, the NJS to the TSI on port 4433. Please note that although these ports are
the most frequently used ones, you can freely choose them during the installation.

3.2 Certificates

A major part of the installation work is to obtain the necessary certificates and keys
to identify the elements of your UNICORE system. For details of the UNICORE
security model refer to [12].
In the course of the installation, you will need at least three certificates/keys:

1. The certificate of the Certification Authority (CA) you would like to use:
For a stand alone system, you can set up your own CA and generate this

10

3 THE UNICORE INSTALLATION 3.2 Certificates

Client

Gateway

TSI

NJS

testmachine1.itwm.fhrg.fraunhofer.de usite.itwm.fhrg.fraunhofer.de

Firewall

TSI

NJS

Internet

*.itwm.fhrg.fraunhofer.de

Port 4004

Port 4444

Port 4666

Port 4433

Port 4445

Port 4666

Port 4433

Figure 5: Network overview of the UNICORE installation at the Fraunhofer
ITWM. Two machines are involved, usite and testmachine1.

11

3 THE UNICORE INSTALLATION 3.3 Creating your own certificates

certificate yourself using openssl. For a gateway that is to be part of an
official UNICORE Grid, you will have to obtain the certificate from the CA
accepted by that Grid.

In any case, you will need a file, which we call mycacert.pem in this example,
containing the certificate of your CA.

2. The certificate of the host machine for your gateway signed by your CA:
This certificate is needed in a so-called pkcs12 format keystore, a file which
we will call myusite.p12.

3. The certificate for your Vsite, i.e. the NJS, signed by your CA: Since in this
example, Gateway and NJS run on the same machine, you can re-use the file
myusite.p12, but in the general case you need a separate certificate.

4. The certificate for at least one user who is going to connect to the Gateway
via the Client, again signed by your CA: In this example we call this file
mypetrydcert.pem. For the UNICORE Client, you will need in addition
this certificate in a keystore, e.g. mypetryd.p12.

3.3 Creating your own certificates

Since obtaining the necessary certificates from an official CA can be cumbersome
or at least time-consuming, we give here the necessary steps for generating the
necessary certificates for a test setup. We assume that you have the standard
openssl [13] installed. Please refer to the openssl manpages for more information,
especially on the x509 commands.

1. Setting up your own certification authority and generate the CA certificate

You should configure your openssl installation in /etc/ssl/openssl.cnf

according to your needs. In an arbitrary directory, say ~/mykeys on some
machine, not necessarily the intended UNICORE server, as some arbitrary
user (not root):

$ > cd ~/mykeys

$ > openssl req -config /etc/ssl/openssl.cnf -new -x509 \

-keyout mycakey.pem -out mycacert.pem -days 365

produces mycakey.pem and mycacert.pem. We will need mycacert.pem

later.

12

3 THE UNICORE INSTALLATION 3.3 Creating your own certificates

$ > mkdir demoCA

$ > cd demoCA

$ > mkdir private

$ > mkdir newcerts

$ > touch index.txt

$ > cat > serial

01

ctrl-D

$ > ln -sf ../mycacert.pem cacert.pem

$ > cd private

$ > ln -sf ../../mycakey.pem cakey.pem

2. Generate the host machine certificate for your gateway

$ > cd ~/mykeys

$ > openssl req -nodes -config /etc/ssl/openssl.cnf -new \

-keyout myusitekey.pem -out myusitereq.pem -days 356

$ > openssl ca -config /etc/ssl/openssl.cnf -policy policy_anything \

-out myusitecert.pem -infiles myusitereq.pem

$ > openssl pkcs12 -export -in myusitecert.pem -inkey myusitekey.pem \

-out myusite.p12

produces myusite.p12 and myusitecert.pem which we will need later.

3. Generate the certificate for a user

(In this example, the user is petryd.)

$ > cd ~/mykeys

$ > openssl req -config /etc/ssl/openssl.cnf -new -keyout mypetrydkey.pem \

-out mypetrydreq.pem -days 365

$ > openssl ca -config /etc/ssl/openssl.cnf -policy policy_anything \

-out mypetrydcert.pem -infiles mypetrydreq.pem

$ > openssl pkcs12 -export -in mypetrydcert.pem -inkey mypetrydkey.pem \

-out mypetryd.p12

For later, we will need mypetrydcert.pem. The file mypetryd.p12 will have
to be imported into the keystore of your UNICORE Client (see [4]).

13

3 THE UNICORE INSTALLATION 3.4 Downloading the necessary software

3.4 Downloading the necessary software

Using your favourite browser, go to

http://www.unicore.org/downloads.htm

and find the links to download the UNICORE elements via the sourceforge website:

1. The Gateway source, in this example:

http://mesh.dl.sourceforge.net/sourceforge/unicore/gateway_4.1.1_build_3_src.tar.gz

2. The network job supervisor (NJS) source, in this example:

http://mesh.dl.sourceforge.net/sourceforge/unicore/njs_4.6.2_build_1_src.tar.gz

3. The UNICORE user data base (UUDB) source

http://mesh.dl.sourceforge.net/sourceforge/unicore/uudb_1.0.0_src.tar.gz

4. The target system interface (TSI) source, in this example

http://mesh.dl.sourceforge.net/sourceforge/unicore/tsi_4.1.2_build_1_src.tar.gz

Furthermore, Java 1.4 and Ant (e.g. version 1.6) are required.
In the following we assume that all tar files were downloaded into an arbitrary
directory named scratch .

3.5 Installing the Gateway

3.5.1 Build the software

As root:

> cd scratch

> tar xvzf gateway_4.1.1_build_3_src.tar.gz

> cd gateway_4.1.1_build_3_src

> ant

> mkdir /usr/local/unicore

> mv build /usr/local/unicore/gateway

> cd /usr/local/unicore

> mkdir keystore

14

3 THE UNICORE INSTALLATION 3.5 Installing the Gateway

3.5.2 Set up certificates and add unicore user

Copy the following certificates to directory keystore

• Certificate of the Certification Authority

• Certificate of this Gateway signed by the above Certification Authority in
pkcs12 format (here, e.g., usite.p12)

Add the user which is to run the Gateway and make him/her member both of the
users and the staff group:

> adduser --home /home/unicore --ingroup users unicore

> gpasswd -a unicore staff

3.5.3 Edit the file “gateway.properties”

> cd /usr/local/unicore/gateway/conf

> ls -l

total 12

-rw-r--r-- 1 root staff 394 Feb 10 16:16 connections

-rw-r----- 1 root staff 2247 Feb 10 16:16 gateway.properties

drwxr-x--- 2 root staff 4096 Feb 10 16:16 logs

The following settings should be modified in gateway.properties :

gw.gateway_host_name=usite.itwm.fhrg.fraunhofer.de

(Note: in case of nameservice problems, a numerical IP address can be given.)

gw.port = 4004

gw.connections = /usr/local/unicore/gateway/conf/connections

gw.identity=/usr/local/unicore/keystore/myusite.p12

gw.password=gateway2

Note: gw.password is the export password necessary to open the keystore file
given by gw.identity . You should make sure this file is not readable by every-
one.

gw.trusted_cas=/usr/local/unicore/keystore/mycacert.pem

Note: in this example, two trusted CA certificates are given, needed is only one,
the one that issued the certificate in gw.identity .

15

3 THE UNICORE INSTALLATION 3.5 Installing the Gateway

3.5.4 Edit the file “connections”

By default this file only contains comments. Add a line in the format

<Vsite name> <NJS machine> <NJS port>

e.g.

VSITE-LOCAL usite.itwm.fhrg.fraunhofer.de 4444

(Note: in case of nameservice problems, a numerical IP address can be given.)
The Gateway alternatively offers a dynamic Vsite registration feature which is
discussed in the documentation [7].

3.5.5 Set up log file directory and file permissions

As root:

> cd /usr/local/unicore

> chgrp -R staff gateway

> cd gateway

> chmod g+w conf

> cd /usr/local/unicore/gateway/conf

> rmdir logs

> mkdir ~unicore/gateway-logs

> ln -sf ~unicore/gateway-logs logs

> cd ~unicore

> chown unicore.staff gateway-logs

> chmod g+w gateway-logs

3.5.6 Add Gateway to your UNICORE site list

You have to tell your UNICORE Client which Usites to contact. On your Client
machine, edit the XML file which contains your Usite list and add the lines:

<Usite name = "ITWM Usite" description = "The official Fraunhofer

ITWM UNICORE gateway"

address = "usite.itwm.fhrg.fraunhofer.de" port= "4004">

</Usite>

(Note: in case of nameservice problems, a numerical IP address can be given.)

16

3 THE UNICORE INSTALLATION 3.6 Installing an NJS

3.5.7 Test

In order to test whether the installation is correct, start the Gateway as user
“unicore” using exactly the following two lines:

$ > cd /usr/local/unicore/gateway/conf

$ > ../bin/start_gateway

You should see the single line response “Gateway started.”. User “unicore” should
see as a response to “ps x” that a job

java com.fujitsu.arcon.gateway.Gateway . gateway.prop

is running.
In the directory /usr/local/unicore/gateway/conf/logs you should see a new file
named “GatewayLog...” and an empty file “startup.log” (if the default logging
level was not changed).
At the end of the GatewayLog file, you should see the text “Initialisation com-
plete.”.
Stop the gate way using

$ > cd /usr/local/unicore/gateway/conf

$ > ../bin/stop_gateway

3.6 Installing an NJS

3.6.1 Build the software and set up directories

As root:

> cd scratch

> tar xvzf njs_4.6.2_build_1_src.tar.gz

> cd njs_4.6.2_build_1_src

> ant

> mv build /usr/local/unicore/njs

> cd /usr/local/unicore

> chgrp -R staff njs

> cd njs

> chmod g+w conf

17

3 THE UNICORE INSTALLATION 3.6 Installing an NJS

> cd conf

> rmdir logs

> mkdir ~unicore/njs-logs

> ln -sf ~unicore/njs-logs/ logs

> cd ~unicore

> chown unicore.staff njs-logs

> chmod g+w njs-logs

> mkdir NJS_STATE

> chown unicore.staff NJS_STATE

> chmod g+w NJS_STATE

> mkdir njs-space

> chown unicore.users njs-space

> chmod g+w njs-space

3.6.2 Edit file “njs.properties”

Edit file /usr/local/unicore/njs/conf/njs.properties :

njs.vsite_name=VSITE-LOCAL

njs.save_dir=/home/unicore/NJS_STATE

uudb.directory=/usr/local/unicore/uudb

njs.incarnationdb=njs.idb

njs.admin_port=4555

njs.gateway_port=4444

njs.gateway=usite.itwm.fhrg.fraunhofer.de

njs.use_ssl=true

njs.ssl_password=gateway2

Again, you should make sure this file is not readable by anyone.

njs.njs_cert_loc=/usr/local/unicore/keystore/myusite.p12

njs.unicore_ca_loc=/usr/local/unicore/keystore/mycacert.pem

18

3 THE UNICORE INSTALLATION 3.6 Installing an NJS

Note: we are using the same certificate for Gateway and NJS because both are
running on the same machine. If your want to run the NJS on a different machine,
you will need a separate certificate and set njs.njs_cert_loc accordingly.

3.6.3 Edit file “njs.idb”

> cd /usr/local/unicore/njs/conf

> cp example_linux.idb njs.idb

Edit file njs.idb :

-DEFINE NJS_FILE_SPACE /home/unicore/njs-space

TextInfoResource [Execution System] Tag [Vsite] Value [Xen Debian]

TextInfoResource [Architecture] Tag [Typ] Value [Intel]

NAME USITE

SOURCE usite 4666 4433

QSTAT_XLOGIN unicore

-DEFINE TOUCH_CMD USR_DIR/touch

-DEFINE FIND_CMD USR_DIR/find

-DEFINE PERL_CMD /usr/bin/perl

INVOCATION [./<RUNCOMMAND>]

-DEFINE TSI_LS /usr/local/unicore/tsi/tsi_NOBATCH/tsi_ls

3.6.4 Install the UUDB

As user root:

> cd scratch

> cd uudb_1.0.0_src

19

3 THE UNICORE INSTALLATION 3.7 Installing a TSI

> ant

> cd build/src

> chmod u+x installer

> mkdir /usr/local/unicore/uudb

> ./installer /usr/local/unicore/uudb /usr/local/unicore/njs

> cd /usr/local/unicore

> chmod g+rx uudb

> cd /usr/local/unicore/uudb

> chmod go+r UUDB

3.6.5 Create local worker user and add an external user to the UUDB

Copy the certificate of the external user into the directory /usr/local/unicore/keystore ,
e.g. mypetrydcert.pem . Edit the file and extract the part from -----BEGIN CERTIFICATE-----

to -----END CERTIFICATE----- and save in a file, e.g. petryd.pem .
As user root:

> adduser --home /home/igor --ingroup users igor

> cd /usr/local/unicore/uudb

> bin/add ../keystore/petryd.pem igor

Note: In the UNICORE Client, you have to set your identity for this Vsite to the
same user as declared here.
A description of how to use the UUDB can be found in

uudb_1.0.0_src/build/src/README

3.6.6 Adjusting njs admin

In the important script /usr/local/unicore/njs/bin/njs_admin , it is ex-
pected that perl is in /bin/perl . Should this not be the case, you have to
edit the script and correct the path.
Furthermore, the values of njs_port and njs_machine have to be set at the
top of the script:

$njs_port = "4555";

$njs_machine = "usite.itwm.fhrg.fraunhofer.de";

3.7 Installing a TSI

3.7.1 Build the software

As user root

20

3 THE UNICORE INSTALLATION 3.7 Installing a TSI

> cd scratch

> tar xvzf tsi_4.1.2_build_1_src.tar.gz

> cd tsi_4.1.2_build_1_src

> ant

> mv build /usr/local/unicore/tsi

In order to complete the installation, additional scripts have to be executed and
various decisions to be taken. See /usr/local/unicore/tsi/README for more
details.
An example is given below:
As user root:

> cd /usr/local/unicore/tsi

> chmod u+x Install*

> ./Install.sh

The Install script asks for a TSI to install.

1 = tsi/NOBATCH

Installation directory:

tsi_NOBATCH

Confirm by typing y.

> cd tsi_NOBATCH

> cp tsi.LINUX tsi

> cd ..

> ./Install_permissions.sh tsi_NOBATCH

3.7.2 Edit file “/usr/local/unicore/tsi/conf/tsi.properties”

tsi.path=/usr/local/unicore/tsi/tsi_NOBATCH

tsi.njs_machine=usite.itwm.fhrg.fraunhofer.de

tsi.njs_port=4666

tsi.my_port=4433

21

3 THE UNICORE INSTALLATION 3.8 Starting the system

3.8 Starting the system

The system can be started using the following script.

#!/bin/sh

Start up a UNICORE gateway, NJS, and TSI

UNICORE_USER=unicore

UNICORE_HOME=/usr/local/unicore

UNICORE_STARTUP_LOG=${UNICORE_HOME}/startup.log

date > $UNICORE_STARTUP_LOG

cd ${UNICORE_HOME}/gateway/conf

su -c ../bin/start_gateway $UNICORE_USER >> $UNICORE_STARTUP_LOG 2>&1

cd ${UNICORE_HOME}/njs/conf

su -c ../bin/start_njs $UNICORE_USER >> $UNICORE_STARTUP_LOG 2>&1

cd ${UNICORE_HOME}/tsi/conf

../bin/start_tsi >> $UNICORE_STARTUP_LOG 2>&1

date >> $UNICORE_STARTUP_LOG

echo

echo UNICORE started.

If the gateway, NJS, and/or TSI run on different machines, the corresponding
parts of the script have to be executed individually.
Note: This is a minimal script to accomplish the task. Additions are necessary to,
e.g. integrate this script into a general Linux runlevel control etc.

3.8.1 Testing the incarnation database

Once the system is running, a first test of whether the file njs/conf/njs.idb was
set up correctly, can be performed by typing (as root):

> cd /usr/local/unicore/njs/conf

> ../bin/njs_admin test_commands igor

The paths given for the various shell commands should be verified and if necessary
corrected in njs.idb .

22

3 THE UNICORE INSTALLATION 3.9 Shutting down the system

3.9 Shutting down the system

The system can be shut down using the following script:

#!/bin/sh

Shut down all UNICORE elements running on this computer

UNICORE_HOME=/usr/local/unicore

UNICORE_SHUTDOWN_LOG=${UNICORE_HOME}/shutdown.log

date > $UNICORE_SHUTDOWN_LOG

cd ${UNICORE_HOME}/njs/conf

../bin/njs_admin tsi refresh >> $UNICORE_SHUTDOWN_LOG 2>&1

../bin/njs_admin tsi stop >> $UNICORE_SHUTDOWN_LOG 2>&1

../bin/njs_admin stop now >> $UNICORE_SHUTDOWN_LOG 2>&1

cd ${UNICORE_HOME}/gateway/conf

../bin/stop_gateway >> $UNICORE_SHUTDOWN_LOG 2>&1

date >> $UNICORE_SHUTDOWN_LOG

echo

echo UNICORE shut down.

3.10 Adding a second Vsite

Assuming, there are two independent machines running one UNICORE gateway
each with associated NJS and TSI. Let’s call these machines “usite” (as above)
and “testmachine1”.
We now want to disable the Gateway on testmachine1 and let the NJS of testma-
chine1 work with the Gateway on usite.

3.10.1 Edit file “njs.properties” for the second Vsite

On “testmachine1” (see above), edit /usr/local/unicore/njs/conf:

njs.vsite_name=VSITE-TESTMACHINE1

njs.gateway_port=4445

Note: This port must be different from the port used for the first Vsite.

njs.gateway=usite.itwm.fhrg.fraunhofer.de

All other settings should remain the same if the Vsite was running properly before
with a different Gateway.

23

3 THE UNICORE INSTALLATION 3.11 Enabling trust between two Vsites

3.10.2 Edit file “connections” for the Gateway

On “usite”, edit /usr/local/unicore/gateway/conf/connections and add the
lines:

Vsite running on testmachine1

VSITE-TESTMACHINE1 testmachine1.itwm.fhrg.fraunhofer.de 4445

(Note: in case of nameservice problems, a numerical IP address can be given.)
Make sure that the certificate on “testmachine1” which is given by the value of
njs.njs_cert_loc in file njs.properties is signed by a certification authority whose
certificate was registered with the Gateway on ”usite”.

3.10.3 Start-up

The UNICORE elements on both machines should be started as described in sec-
tion 3.8. Whether the elements on “usite” are started first or second doesn’t
matter. Both sites can be shut down or restarted independently.

3.11 Enabling trust between two Vsites

If one NJS tries to consign a sub-job to a second NJS without having been registered
in the second NJS’s UUDB, the error message in the UNICORE Client looks similar
to this:

Message: Remote NJS error on consign:
UPL Reply reports an error:
-1:com.fujitsu.arcon.njs.Authoriser$UnauthorisedException:
Consignor <EMAILADDRESS=none, CN=UNICORE VSite1, ...> is not known
to the UUDB

In order to enable the execution of different sub-jobs of a given job on different
Vsites, the NJSs of the Vsites to which subjobs are consigned have to have the
certificates of the NJSs that are consigning the jobs.
E.g., in order to permit the NJS on “usite” to consign a sub-job to the NJS on
“testmachine1” (see section 3.10), the following actions have to be taken:
Copy the certificate for usite (e.g. myusitecert.pem) to testmachine1.
Edit the certificate and extract the part from -----BEGIN CERTIFICATE----- to
-----END CERTIFICATE----- and save in a file, e.g. usite.pem . Move the file to
/usr/local/unicore/keystore on “testmachine1”.
Then as user root:

> cd /usr/local/unicore/uudb

> bin/add_njs ../keystore/usite.pem igor

24

3 THE UNICORE INSTALLATION 3.12 Adding a software resource

Note: an Xlogin (here “igor”) must be given, but it is never used by the NJS. It
is, however, necessary for adminitrational purposes, e.g. when you want to delete
an entry from the UUDB. It is permitted to use the same Xlogin for several users
and NJSs.
No restart of any UNICORE element is necessary to make the change to the UUDB
take effect.

3.12 Adding a software resource

If a plug-in for the resource exists on the Client side, you have to find out what
the specific interface is, in particular what the official name of the resource is and
how it is invoked.
Then you have to add a SOFTWARE_RESOURCE and an INVOCATION entry to the
IDB. The former has to be made in the EXECUTION_TSI section of the IDB, the
latter in the RUN section of the IDB.

3.12.1 Example: POV-Ray

The plugin for the image rendering software POV-Ray is a standard part of the
UNICORE Client distribution. However, the necessary IDB entries are not well
documented. They are ...
... in the EXECUTION_TSI section of njs.idb:

SOFTWARE_RESOURCE APPLICATION povray 3.5

... in the RUN section of of njs.idb:

INVOCATION povray-3.5 [echo "Executing POV-Ray...";

cp /home/unicore/povray/povray.ini .;

env DISPLAY=localhost:0.0;

/usr/bin/povray -d $POVRAY_INPUTFILE

]

In addition, the directory /home/unicore/povray should be created and the file
povray.ini copied there from the default directory of the POV-Ray distribution.
The above invocation assumes that the executable is in /usr/bin.

Acknowledgement

The authors would like to thank Christian Peter for valuable suggestions and
advice. The Competence Center High Performance Computing at the Fraunhofer
ITWM (http://www.itwm.fhg.de) is supporting this work.

25

REFERENCES REFERENCES

License

This work is licensed under the Creative Commons Attribution-NonCommercial-
ShareAlike 2.0 Germany License. To view a copy of this license, visit http://

creativecommons.org/licenses/by-nc-sa/2.0/de/ or send a letter to Creative
Commons, 543 Howard Street, 5th Floor, San Francisco, California, 94105, USA.

References

[1] A. Streit, D. Erwin, Th. Lippert, D. Mallmann, R. Menday, M. Rambadt,
M. Riedel, M. Romberg, B. Schuller, and Ph. Wieder. UNICORE - From
Project Results to Production Grids. In L. Grandinetti, editor, Grid Com-
puting and New Frontiers of High Performance Processing. Elsevier, 2005.
Available at http://arxiv.org/abs/cs.DC/0502090.

[2] Unicore Sourceforge Homepage. http://unicore.sourceforge.net.

[3] RFC 3280: Internet X.509 Public Key Infrastructure Certificate and Certifi-
cate Revocation List (CRL) Profile. http://www.ietf.org/rfc/rfc3280.

txt.

[4] Unicore Client User Guide. Available at http://unicore.sourceforge.net/
docs/client manual.pdf.

[5] Unicore Test Grid. http://www.unicorepro.com/.

[6] Sven van de Berghe. Unicore Architecture and Server Components. Unicore
Tutorial, GGF11, 2004. Available at http://unicore.sourceforge.net/

docs/ggf11 tutorial arch.pdf.

[7] Sven van de Berghe. Using the Unicore Gateway v4.0.1. 2004. Available at
http://unicore.sourceforge.net/docs/gateway manual.pdf.

[8] Sven van de Berghe. Using the NJS and TSI (v4). 2004. Available at http:
//unicore.sourceforge.net/docs/njs tsi manual.pdf.

[9] UUDB Readme. 2004. Available at http://unicore.sourceforge.net/

manuals readmes.html.

[10] Sven van de Berghe. Using the Incarnation Database (v.4.1). 2004. Grid
Forum Document GFD-I.18, available at http://www.ggf.org/documents/

GFD.18.pdf.

26

REFERENCES REFERENCES

[11] Storage Resource Broker Homepage. http://www.sdsc.edu/srb/index.

php/Main Page.

[12] T. Goss-Walter, R. Letz, Th. Kentemich, H.-Ch. Hoppe, and Ph. Wieder.
An Analysis of the UNICORE Security Model. 2003. Available at http:

//unicore.sourceforge.net/docs/gateway manual.pdf.

[13] OpenSSL Homepage. http://www.openssl.org/.

27

