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Virtualization

Grid problem: 
coordinated resource 
sharing and problem 
solving in dynamic, 
multi-institutional 

virtual organizations.

coordinated resource 
sharing and problem 

solving

If you ask me:
Grid Computing is about Virtualization.

If you ask Foster, Kesselman & Tücke: 
The real and specific problem that under lies the Grid concept is coordinated resource sharing and 
problem solving in dynamic, multi-institutional virtual organizations.

Several components

Imagine a set of resources: For example, ...



... a cluster, ...

... a network and ...

... a radio telescope.



coordinated resource 
sharing and problem 

solving

in dynamic, multi-
institutional virtual 

organizations

Now, people may want to use these three resources in a coordinated way: 
- Get their share of the resource
- Use all three resources at the same time, e.g. to receive some signal, transfer it to the cluster, 
and process the data.
- They don’t want to deal with the specific interfaces of the telescope or the cluster.
- They just want to solve their problem, i.e. examine the radiation of a pulsar.

multi-institutional: ...

... while the cluster may be in Germany, e.g. the Fraunhofer Resource Grid, ...



in dynamic, multi-
institutional virtual 

organizations

Virtualization?

... the telescope may be in the US.

multi-institutional: So we have different organizations collaborating. 
- Maybe scientists from Germany and the US are working on the same project, this can then be 
called a “virtual organization” (VO)
- Usually, a VO is volantile/dynamic: The members change very often. 

So: What has this to do with virtualization?



you might know techniques like Xen and VMware
- provide virtual PCs in some way.
- but this is not what I mean. (at least not now)

In this context:
- The scientist doesn’t need to know where the cluster is
- Or how to obtain a login
- Or how to run a job on it (different site configurations).
- It just looks like a cluster thingy (Dings), that can be used.
-> Virtual machine that has a radio telescope and analysis processing power built in.

- hmm, ok, I am not the graphics guy - just imagine some duck tape around everything.



Grid 
Characteristics

Distributed Systems
Site Autonomy

But also: High security
Virtual resources in a pool

2 The Architecture of UNICORE

Figure 1 shows the layered Grid architecture of UNICORE consisting of user,
server and target system tier [5]. The implementation of all components shown is
realized in Java. UNICORE meets the Open Grid Services Architecture (OGSA)
[6] concept following the paradigm of ’Everything being a Service’. Indeed, an
analysis has shown that the basic ideas behind UNICORE already realizes this
paradigm [7,8].

2.1 User Tier

The UNICORE Client provides a graphical user interface to exploit the entire
set of services offered by the underlying servers. The client communicates with
the server tier by sending and receiving Abstract Job Objects (AJO) and file
data via the UNICORE Protocol Layer (UPL) which is placed on top of the
SSL protocol. The AJO is the realization of UNICORE’s job model and central
to UNICORE’s philosophy of abstraction and seamlessness. It contains plat-
form and site independent descriptions of computational and data related tasks,
resource information and workflow specifications along with user and security
information. AJOs are sent to the UNICORE Gateway in form of serialized and
signed Java objects, followed by an optional stream of bytes if file data is to be
transferred.

Fig. 1. The UNICORE architecture.
Streit et al.: Unicore - From Project Results to Production Grids 

from: http://www.globus.org/toolkit/about.html

Unicore architecture
- End-to-end model
- Architecture is clearly visible

Globus Toolkit V4
- Service-oriented architecture
- A lot of WSRF-compliant services
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Figure 4: Interactions of EMS services to execute a legacy BLAST job 

3.5 Data Services 

This section describes those OGSA services concerned with the management of, access to and 

update of data resources, along with the transfer of data between resources.  These are 

collectively called “data services”. 

3.5.1 Objectives 

Data services can be used to move data as required, manage replicated copies, run queries and 

updates, and federate data resources. They also provide the capabilities necessary to manage the 

metadata that describes this data in particular the provenance of the data itself. 

For example, suppose an Execution Management Service (EMS) needs to access data that is 

stored elsewhere. Data services allow that EMS to access the data remotely or to stage a copy to a 

local machine.  If it accesses the data remotely, a cache service may be used to cache some of the 

data locally.  The data may be available in multiple locations, with the data services ensuring a 

consistency policy between the replicas.  As with all OGSA services, the data services may 

provide specific policy limitations or service guarantees.  

Conversely, suppose that a data federation service wishes to define a schema for data stored in 

different formats at different locations.  It can use OGSA data services to specify how queries 

against this schema can be mapped to the underlying resources, where joins or data 

transformations should be executed and where the data should be delivered.  

The data services do not rely on or specify the semantics of the data they hold.  They operate with 

generic data.   
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Key problems

• Security

• Resource Management

• Data Management

• Information Services

Grid Security

Open Grid Service Architecture
- A big working group in the Global Grid Forum
- Tries to standardize the architecture used in grids
- Make components interchangeable

- Security: How to authenticate and authorize users in a decentralized way?
- RM: How to manage resources without a central entity? How to schedule?
- DM: How to handle huge amounts of data?
- IS: How to retrieve information from other sites? How to know there is another site?



Security = Encryption 
+ Authentication
+Authorization

+ etc.

Encryption

Authentication

- Data needs to be encrypted when sent over unsafe networks
- Ususally done with TLS (Successor of SSL): Data is sent through an encrypted TCP tunnel.
- But: How to know that the TCP tunnel is pointing at the receiver?

- Answers the question: “What is the identity of my counterpart?”
- Easy when dealing with just one organization: The system administration issues accounts, 
maintained in a central system (e.g. LDAP).
- More difficult in a distributed environment: How to do this for several organizations?



Passport: X.509

X.509 is not enough

• Dynamic delegation of rights to a service 

• Delegation to dynamically generated 
services

• Solution:

• Di!erent signatures (Unicore)

• Proxy certi"cates (Globus)

- X.509 is a standard for digital certificates (RFC 2459)
- Think of an electronic passport
- Unlike GPG, there is a Certificate Authority (CA) that issues the certs
- An X.509 cert represents the identity of a user.

- This is one of my certs
- Issued by the Fraunhofer CA
- Has an expiration date
- Describes who I am (DN), who the CA is
- So: The CA signs a RSA keypair which I can use.
- A X.509 cert has:
 * A DN of the holder
 * A DN of the CA
 * Public and private keys, signed by the CA
 * Reference to the CA policy
 * Reference to the cert revocation list.

- Delegation: Transfer the rights of a user to a service
- Problem: The user doesn’t want to reveal his private passphrase
Two ways: Either use message based security (Unicore) or use proxy certs (Globus)



Welch et al: X.509 Proxy Certificates for Dynamic Delegation

Security = Encryption 
+ Authentication
+Authorization

+ etc.

Authorization

Dynamic Delegation with X.509 certs (simplified)
Goal: Delegate the user’s rights to a target service without the exchange of private keys.
- Step 1: Establish an integrity protected channel.
- Step 2: Target service generates a new public and private keypair.
- Step 3: Create a certificate request (CR) with the public key.
- Step 4: Initiator uses his own private key to sign the CR. Within the proxy certificate, the “signer” 
field is filled with the user’s public key (or another proxy certificates public key)
- Step 5: The new proxy certificate is sent back to the target service.

- We have encryption and authentication by now.

- Authorization: What is the user (once authenticated) allowed to do?
- Enforce the site policy.
- Relatively simple: When authentication is done, we know who is asking for the service.



DN -> Privilege 
mapping

Security = Encryption 
+ Authentication
+Authorization

+ etc.

Grid Resource 
Management

- A mapping of the distinguished name (DN) to the local privileges must be made.
- This can be done locally: A service maps DNs to local users.
- The user’s privileges granted to the requestor.
- Usually: Unix security model.
- Unicore: UUDB, Globus: gridmap-file

- etc. is missing
- Usual security precautions: Installed updates, bugfixes, firewalls, ...
- Single Sign-On: Reduces the risk of lost & stolen passwords (and is convenient for the user)



What is a grid 
resource?

e.g. a cluster

or a radio telescope



network resources

(graphic) workstations

storage resources.



Resource Management
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Grid Scheduling Use Cases. Proposed GGF document.

Managing resources in the grid
- There is maintenance to do -> not covered here
- Assign jobs to resources, monitor them
- Relatively easy for one resource
- But often, jobs have a difficult workflow.

Example of a complex job
- Coallocation
- Software licenses
- ...

Gekoppelte Modelle: ERAMAS
- Gekoppelte Modelle zur Bewertung der Schadstoffausbreitung im Grundwasse, im Boden und in 
der Luft.



• Resource Discovery

• Information Gathering

• Job Execution

Schopf:  Ten Actions when Grid Scheduling

Grid Resource 
Management

Resource Discovery

• Authorization "ltering

• Application requirement de"nition

• Minimal requirement "ltering

Information Gathering

• Dynamic information gathering

• System selection

Refer to Schopf, “Ten steps when grid scheduling”
- Resource Discovery: which resources are available?
- Information Gathering: what is the current situation of the resources
- Job Execution: run and monitor the job on the selected resource

Deals with the search for available resources, ends with a list of execution candidates
- Authorization filtering: determine the set of resources the user submitting the job has access to.
- Application requirement definition: determine what the application requirements are (Architecture, 
CPU, Memory, OS, Libs)
- Minimal requirement filtering: create a list of resources that fulfill the applications requirements.

Determines where to execute the job.
- Dynamic information gathering: the current situation on each location needs to be considered, 
e.g. free cluster nodes, load, network IO.
- System selection: based on the gathered information, an execution location will be selected. One 
needs to consider network transfers, cluster walltimes, local policies, pricing, reliability...



Job Execution

• Advance reservation

• Job submission

• Preparation tasks

• Monitor progress

• Cleanup tasks

Di!erent architectures

Centralized Scheduling

- Advance reservation: Especially needed when doing coallocation. Coallocation refers to several 
jobs running in parallel on different resources, advance reservation (hopefully) ensures resource 
availability for the given job.
- Job submission: the job is submitted to the resource
- preparation tasks: prepare the resource for job execution, e.g. copy input files, create directories, 
stage application
- monitor progress
- job completion: notify the user
- cleanup tasks: copy the results and delete temporary files.

There are 3 architectures for grid schedulers.

A central scheduler manages all resources
- not scalable
- difficult with multiple organizations / policies



Hierarchical 
Scheduling

Decentralized 
Scheduler

Negotiation

A high-level scheduler receives jobs and assigns them to local resource schedulers (typical setup)

There is no central scheduler, but a distributed queue. Each local scheduler retrieves its jobs from 
the distributed queue.

Often, it is necessary that a resource guarantees a certain QoS
- Service level agreements need to be made
- Usually in a negotiation process, see e.g. GRAAP-WG of GGF.



Data Management

EGEE

• 80 GB/sec. 
continuously

• Data is streamed 
to computing 
centers across 
Europe

• Experiments are 
run on the 
stored data

EGEE = Enabling Grids for E-Science in Europe
An EU-funded project that aims at creating a grid infrastructure for researchers in Europe
Motivated by the Large Hadron Collider and its experiments,
situated at CERN in Switzerland



• Manage huge amounts of data

• Provide data where it is needed

• Determine where it is needed

• Help to "nd speci"c datasets

Data management 
challenges

GridFTP

• Add-on to FTP:

• Uses GSI to authenticate users

• All data transfers are encrypted

• Allows third-party transfers

• Striped File transfer

• Partial transfers

But: Not su#cient

• Doesn’t abstract from the resource

• No search mechanisms for speci"c 
datasets

• Doesn’t integrate di!erent storage 
technologies

• No support or replicas and caches

Striped file transfers: Think of RAID Level 0
In addition: Automatic negotiation of TCP buffer/window sizes.
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Storage Resource Broker
- Developed by the San Diego Supercomputing Center (SDSC)
- Provides a comprehensive system for data management:
 * Integration of data with meta-data
 * Provides sophisticated storage management (Replication & Caching)

A SRB zone consists of the following entities:
- Exactly one metadata-catalog which stores information about physical volumes, metadata etc.
 * Contains all metadata
 * Implemented on top of a DBMS
 * Responsible for the abstraction from physical resources - associate logical names with 
datasets
 * Search for datasets based on associated metadata
 * User authentication
- Several SRB-Servers have storage resources like DBs, filesystems and tapes attached.
- Special MCAT-Server which accesses the metadata catalog.

Workflow of a data access operation:
(1) SRB-Client connects to the MCAT Server and tries to authenticate
(2) The MCAT-Server compares this credential to the one stored in the metadata-catalog
(3) If the authentication is valid, an agent process is created. Note: The agent processes are 
usually running on the MCAT server.
(4) The client submits its request to the agent.
(5) The agent authorizes the query using the metadata catalog
(6) If the data is stored on another SRB server, the agent connects to it.
(7) A local agent is created for request processing.
(8) The local agent accesses the storage resource
(9) Results are sent back to the client
(10) Update of the metadata



Additional concepts

• Fine-grained access control

• Ticket mechanism allows temporary 
access delegation

• Automatic or manual replication of 
datasets

• Caching on fast media while archiving on 
slow media

Virtualization

Speak VMWare, Xen, OpenVZ, ...

Now, I talk about this stuff.
- I will focus on Xen - other virtualization products are not included here, but may be used as well
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resources can be acquired as the service grows (or from
which only a low up-front cost is made if the service does
not prosper).

There is no single platform-wide implementation of
the matching algorithms, as the co-existence of several
independent RD Systems will offer choice and diversity
in resource discovery mechanisms and charging models.
Some RD Systems might provide intelligent searching
capabilities – such as finding a XenoServer that will min-
imize the total round-trip time for a given set of clients,
while others will offer just basic searching functionality.
Also, some RD Systems might be configured to charge
clients for using the search mechanisms or to charge
XenoServers for putting them higher in the suggestions
list. Others can offer free services.

V. XENOSERVER CONTROL ARCHITECTURE

In Sections II–IV we have presented the core architec-
ture of the XenoServer Open Platform and shown how,
over that, we structure services for advertisement and re-
source discovery. For the final part of this paper, we
turn our attention to the XenoServers themselves and
their internal structure. We do so at two levels. First of
all, Section V-A introduces the prototype XenoServer.
Secondly, in Section V-B we present the decomposi-
tion of this system into a number of components, to ex-
tract common functionality and to aid the deployment
of XenoServers based on existing platforms for mobile
agents and code execution.

A. The Xen-based XenoServer

Figure 4 shows the general structure of our prototype
XenoServer. This is based on a low-level component,
termed the Xen hypervisor, which virtualizes the physi-
cal resources of the machine, apportioning them between
the various environments that it hosts, by creating a vir-
tual machine for each one. Each of these environments is
called a domain, and is isolated from the other domains
in terms of security and resource consumption. The hy-
pervisor accounts the resource usage that each domain
makes.

Thus, unsafe and unverified tasks can only be mis-
chievous inside their execution domain, harming no one
but the client who instantiated them. Each domain runs
an instance of a guest operating system. These operat-
ing systems are specially ported to operate over Xen,
accessing the virtualized hardware through appropriate
device drivers. The companion paper describes Xen and
its interfaces in detail, and shows the benefits of eschew-
ing full virtualization of the underlying hardware [2].
Currently, we have developed one guest operating sys-

tem providing a complete Linux environment, and have
two further systems in progress to provide NetBSD and
Win32 environments.

There can be multiple concurrent domains running the
same guest operating system and so creating a resource-
guaranteed session on a Xen-based XenoServer corre-
sponds to booting a fresh domain for it.

Xen 
(hypervisor)

H/W (SMP x86, phy mem, enet, SCSI/IDE)

virtual 
network

virtual 
blockdev

virtual 
x86 CPU

virtual 
phy mem

Control
Plane

Software

GuestOS
(XenoLinux)

GuestOS
(XenoBSD)

GuestOS
(XenoXP)

User
Software

User
Software

User
Software

GuestOS
(XenoLinux)

Xeno-Aware
Device Drivers

Xeno-Aware
Device Drivers

Xeno-Aware
Device Drivers

Xeno-Aware
Device Drivers

Domain0
control

interface

Domain 0 Domain 1 Domain 2 Domain 3

Fig. 4. The Structure of the Xen XenoServer

In addition to supporting guest operating systems, Xen
exports a privileged control interface to the initial “Do-
main0” environment that it starts at boot-time. This do-
main’s role is to run the control plane aspects of the sys-
tem and, in particular, to export the session creation, de-
ployment, and status interfaces seen earlier. Depending
on their requirements, other domains may host code sup-
plied by the XenoCorps with which the XenoServer has
entered into a relationship – for instance performing val-
idation of credentials locally if the security implications
are deemed acceptable.

B. XenoServer Control Architecture structure

We will now introduce how the control aspects of a
XenoServer can be structured. This is motivated by two
examples. Firstly, we expect that most installations of
XenoServers will co-locate groups of machines. For
such clusters it is worthwhile to aggregate the session
deployment and query interfaces to act over the cluster
as a whole rather than distinguishing each machine indi-
vidually. Secondly, clients may wish to use the platform
to deploy tasks other than complete operating system
instances over Xen – for instance, a XenoServer could
host Enterprise JavaBeans (EJB) or .NET components
using existing application-server packages. Our design
reduces the effort necessary to deploy new kinds of exe-
cution environment.

These observations lead us to introduce an additional
level of indirection between the system that ultimately
hosts tasks and the interface with which clients interact.
Figure 5 illustrates this structure, showing a configura-

From: Hand, Harris, Kotsovinos, Pratt: Controlling the XenoServer Open Platform.

Xen virtualizes the physical hardware of a system
- The hardware is shared between different instances (possibly different OS)
- Each instance “sees” its own CPU, memory etc.
- Peripherals are mapped in the virtual machine
- For Xen: OS has to be adjusted to the Xen VMM

x86 Ring modes
- protection of certain operations (accessing memory, IO etc. only in ring 0)
- typically, kernel in ring 0, apps in ring 3
- xen shifts kernel to ring 1 (partially), mostly hypervisor in ring 0
- hypervisor multiplexes different kernels

- Domain0 is privileged - administration of all other domains can be done here.
- Domain0 provides the drivers etc - the hypervisor is only responsible for dispatching CPU, 
memory etc.
- Device drivers are split in two parts:
 - the xen part (real driver in dom0)
 - the domU stubs
 -> The OS must be adjusted to the xen architecture (newer CPUs: special instructions that 
work around it)
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Figure 10: Effect on packet response time of migrating a running Quake 3 server VM.
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The final iteration in this case leaves only 148KB of data to 
transmit.  In addition to the 20ms required to copy this last 
round, an additional 40ms are spent on start-up overhead.  The 
total downtime experienced is 60ms.

Figure 11: Results of migrating a running Quake 3 server VM.

Quake 3 server. Six players joined the game and started to
play within a shared arena, at which point we initiated a
migration to another machine. A detailed analysis of this
migration is shown in Figure 11.

The trace illustrates a generally similar progression as for
SPECweb, although in this case the amount of data to be
transferred is significantly smaller. Once again the trans-
fer rate increases as the trace progresses, although the final
stop-and-copy phase transfers so little data (148KB) that
the full bandwidth is not utilized.

Overall, we are able to perform the live migration with a to-
tal downtime of 60ms. To determine the effect of migration
on the live players, we performed an additional experiment
in which we migrated the running Quake 3 server twice
and measured the inter-arrival time of packets received by
clients. The results are shown in Figure 10. As can be seen,
from the client point of view migration manifests itself as

a transient increase in response time of 50ms. In neither
case was this perceptible to the players.

6.5 A Diabolical Workload: MMuncher

As a final point in our evaluation, we consider the situation
in which a virtual machine is writing to memory faster than
can be transferred across the network. We test this diaboli-
cal case by running a 512MB host with a simple C program
that writes constantly to a 256MB region of memory. The
results of this migration are shown in Figure 12.

In the first iteration of this workload, we see that half of
the memory has been transmitted, while the other half is
immediately marked dirty by our test program. Our algo-
rithm attempts to adapt to this by scaling itself relative to
the perceived initial rate of dirtying; this scaling proves in-
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Virtual machine images are containers for the whole virtual system. 
-> Installation can be done and tested on a single system,
 deployment in the wild
-> For commercial codes: License can be part of the image.
-> Migration of running systems is easy

Live migration of a quake server
- packet flight time increases by 50 ms
- system remains fully operational!
-> You will investigate further during the exercises

Deployment:
- Images are copied from a central repository and started.
- How to decide whether a system is up and running *correctly*?



Amazon Elastic 
Compute Cloud

Quality assurance can be done with the image infrastructure:
- Use only tested and certified (minimal) Images
- Specification of hosting-environment can be done, “certified gold provider”
- Image maintenance: only the “golden master” must be updated

Secured Containers:
- Data can be shipped with the container (encrypted)
- Decryption in memory during execution of the image
- Better security: No data lies around, goes in backup system, ...
- The providers may distinguish themselves by providing different levels of security 
(“gold provider”)

Cloud Computing:
- Do not provide complex services
- But allow people to launch their complete server images
- Billing per CPU-hour and storage used
- currently in beta stage
- find more at http://www.amazon.com/gp/browse.html?node=201590011
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