
Formal Verification of a Grid Resource Allocation
Protocol

Mathias Dalheimer and Franz-Josef Pfreundt
Fraunhofer Institut für Techno- und Wirtschaftsmathematik

Kaiserslautern, Germany
{dalheimer,pfreundt}@itwm.fhg.de

Peter Merz
Department of Computer Science

University of Kaiserslautern, Germany
peter.merz@ieee.org

Abstract—As the adoption of grid technology moves from
science to industry, new requirements arise. In todays grid
middlewares, the notion of paying for a job is a secondary
requirement. In addition, the concept of selling computational
power on a market is not established. On the other hand, the
lack of billing capabilities hinders the commercial adoption.

In this paper, we present our resource allocation protocol that
suits the needs of commercial solution providers. We have devel-
oped an auction-based resource broker which uses a distributed
agent infrastructure to communicate the user’s requirements to
resource providers and monetary prices back. The protocol has
been formally verified and guarantees certain properties - for
example, we can guarantee that the right stakeholder is billed
for a job.

I. INTRODUCTION

Job schedulers for distributed systems usually aim at the
optimization of metrics like throughput or response time. With
the advent of grid computing, other metrics such as file transfer
times are used during scheduling. We argue that privacy issues
and price are important in commercial grid use cases and need
to be incorporated as well.

For example, consider a service provider which offers
simulation software as a service. The user defines the job and
transfers the input data to the service provider. It is up to the
service provider to find suitable resources and forward the data
- however, since the input data might be confidential, some
resource providers might not be acceptable to this specific
user.

In addition, different resource providers compete on a
market for computational resources in terms of prices and
speed. From the viewpoint of a resource provider, the user
must be able to pay for the job execution. The service provider
fulfills the role of a broker which ensures that payments will
be made. In the case of execution failure, the service provider
needs to determine which entity bears the responsibility and
arrange appropriate penalty payments.

In this paper, we present the scheduling protocol of Calana.
It distinguishes the roles of a resource provider, a user and
a broker that coordinates requests and offers. We argue that
it is not possible to do scheduling completely without user
interaction because commercial computations often deal with
confidential data - only the user can decide whether to trust a
resource provider or not. The protocol finds a contract between

user and resource provider. It ensures the accountability of the
whole computation.

The paper is structured as follows: In the first section,
we present the use cases with more details and derive the
requirements for a scheduler. We then discuss the scheduling
protocol in sections III and IV. The verification of the protocol
is presented in section V. Related work is given in section VI
and we conclude in section VII.

II. GRID USE CASES IN COMMERCIAL APPLICATIONS

We describe two use cases more detailed and derive the
requirements for scheduling in similar scenarios. For the
discussion of the use cases, we use the following terminology:

1) A user is the consumer of a grid service.
2) A resource provider is an organization that provides

computational and data resources to users for money.
Typically, resource provider and users are not part of
the same organization.

3) A service provider provides services to users while
utilizing the resources of resource providers.

Platforms like Amazons Elastic Compute Cloud (EC2) show
the great interest in using remote resources dynamically for
a certain fee [1]. Regarding the quality of the resource two
metrics are used today: monetary price and performance, i.e.
computation speed or network bandwidth.

In the German project PartnerGrid, we cooperate with
simulation software providers. Our requirements are derived
from their usage scenarios, which we outline below.

A. Metal Casting Simulations

MAGMASOFT is a simulation tool chain for casting sim-
ulation. The user defines the geometry of the cast along with
material and casting parameters and simulates the casting
process. Based on the simulation results, the mold might
be adjusted until certain properties are fulfilled - then, the
real part will be casted. The application consists of a front
end with built in visualization capabilities. The simulation is
encapsulated in a backend which can be executed on the user’s
desktop, on a compute cluster or in a grid environment.

The specification of the mold contains a lot of knowledge
of the user and is critical for the successful casting of highly
specialized parts. A competitor could learn a lot from these
input files. It is therefore not acceptable to the user to have

a job running “somewhere” on the grid - confidentiality must
be guaranteed for the job. A potential resource provider must
provide a security certification. These may be issued by a third
party which ensures that certain standards are met.

B. Numerical Forming Simulations

GNS provides users from mainly the automotive industry
with forming simulation software in order to calculate stresses
and other material properties after the forming process. This
allows the user to predict the behavior of the manufactured
parts in the application. As in the MAGMASOFT use case,
the way of manufacturing the parts contains a lot of knowledge
and must not be revealed to competitors.

In addition, users demand control over price and perfor-
mance. If a project deadline is close, users are willing to spend
more money for a computation. If the job completion is not
critical, they want to save money. Resource providers have the
opportunity to define different pricing schemes. For example,
if a grid resource is underutilized, the resource provider might
offer a discount rate to cover the availability cost without a
margin.

C. Requirements for scheduling

As the scenarios above show, it is important to users to
be able to identify the provider actually executing their jobs.
A scheduler suitable for these use cases must provide the
following features:

1) The user must be able to identify the resource provider
and approve it.

2) The user must be able to give his job different priorities
and exploit the underlying market for resources.

In addition to the user’s requirements the resource and
service provider have additional requirements. When resources
are provided on a per-usage basis, the provider needs to be
able to examine the credit rating of the user for a specific job
before accepting it. The broker needs to account for the jobs
and needs an audit trail in order to be able to pin problems.

As Cheliotis et al. recommend, we use an auction to
determine prices dynamically for each job [2]. A broker maps
current job requests to allocations using an auctioning scheme.
The broker incorporates pricing and performance information
in its decision. In addition, the user can specify a trade-
off between price and performance. We discussed the market
mechanism in an earlier paper [3].

We have developed a protocol that satisfies these needs and
formally verified several properties. In the next sections, we
present the core ideas, while the verification is presented in
section V.

III. OVERVIEW OF THE PROTOCOL

Calana is a grid scheduling framework. In contrast to other
systems, it is not composed of an information system and a
scheduling daemon but uses a distributed agent-oriented archi-
tecture. Figure 1 shows the typical environment of Calana. We
distinguish scheduling from job management in the sense that
scheduling decides where to run a job, while job management

is concerned with how the job is executed, e.g. when to
initialize data transfers.

Workload
Manager Broker

AgentIgor AgentIgor

Scheduling
Jobmanagement

Resource 1 Resource 2

User

Fig. 1. The environment of a Calana deployment.

A workload manager is responsible for the execution of a
task and serves as a “proxy” for the user. It contacts the broker
which starts an auction for the job. The agents receive the
auction request and decide to bid. When the auction has timed
out, the best bid is offered to the workload manager. If the bid
is accepted, the workload manager contacts the agent in order
to get the endpoint address for the corresponding igor1. Igor
is the entity actually executing the job – this can be a single
node or a cluster system. The agent and the igor are closely
coupled and exchange job and resource states frequently. The
workload manager now contacts the igor directly in order to
run the job.

We divide a job execution in three phases: First, an al-
location needs to be made. This involves negotiating with
resource providers, in our case through an auction. The second
phase encapsulates the execution of the job. Finally, we need
to account for the job – depending whether the job was
successfully executed.

In addition to the requirements in section II, we have these
nonfunctional requirements:

1) The messages need to be exchanged asynchronously.
Since the events occur asynchronously, this is a natural
requirement.

2) Eventually, the job state must be the same for all
stakeholders.

3) Both user and provider must be able to cancel the
allocation at all times.

The purpose of the broker is to mediate between the workload
manager and the providers. It handles the negotiation and de-
cides which provider offered the best bid. After the allocation
is set, it forwards certain messages to the contract parties, i.e. a
ProviderCancel message to inform the workload manager that
a job cannot be handled by a provider (of course, a penalty
for the provider occurs). All messages are sent to the broker

1“Igor, would you mind telling me whose brain I did put in? “ — Dr.
Frederick Frankenstein

and forwarded to its final destination if necessary - the broker
forms a messaging bus. Please note that the broker daemon
can be distributed itself to prevent bottlenecks.

It is not advisable to have more than one logical broker
implemented. It would be very difficult to prevent collusion
effects like information trade in such a system [4]. In addition,
the broker can record audit information easily.

We develop a set of state models in order to keep the job
state consistent in the whole grid. Please note that we try to
represent the job state - in all subsequent models, we omit the
fact that a service itself has a state as well (it may be running,
provisioned or down).

A. The Job State Model

Since the job state model is the common ground for all
daemons, we adhere to the upcoming OGSA-BES standard in
order to preserve the compatibility to other infrastructures [5].
The OGSA-BES model is shown in figure 2. A successful job
starts in the state Pending, changes to Running while the
job is executed, and finishes afterwards. If the job crashes, its
state is Failed. A user can abort the job, updating the state
to Terminated.

Pending

Terminated

Running

Failed

Finished

Fig. 2. The OGSA-BES job model as given in [5].

This simple model represents a common ground for many
grid infrastructures. It is possible to extend the model by
introducing sub states: for example, one might model file
staging by adding two sub states Running:Stagein and
Running:Stageout to the Running state. Another entity
not aware of these sub states will perceive them as the state
Running, thus preserving the meaning.

Calana extends the BES model as shown in figure
3. The Pending state reflects the negotiation process
which must happen before the execution can start. In
addition, the Finished state is divided in two parts:
Finished:Closing reflects that the job has ended suc-
cessfully while Finished:Closed is only entered if both
workload manager and provider have acknowledged.

B. The Resource State Model

For a meaningful coupling of the Calana resource broker
with the execution layer, we need a model of the resource’s

behavior, see fig. 4. We assume that each resource is capable
of running one job at any time. The resource starts in the
Down state. It then may be booted, a middleware component
may need to be started. Once it is fully usable, it reaches the
state Ready where it is capable of executing jobs. If a job can
be started successfully, the resource is in the state Running.
A job may then terminate either successfully or fail - in either
case, the resource will be in the Ready state again.

If the resource is not executing a job, it can be shut down
administratively. In the case of a resource failure, the state will
change from either Running or Ready to Down. Please note
that this state change might not be visible from the execution
layer point of view - if the kernel crashes, a middleware
component cannot change the state any more. But for another
system, this change can be perceived - e.g. heartbeats might
not be received any more.

If a job runs, there are three possible transitions: Either a
job fails due to resource failure, then the job is in the state
Terminated - it is the responsibility of the job management
to get the resource back into the state Free (not shown in
the diagram). Another possibility is a user cancellation - the
resource cancels the job and returns to Free. Usually, the job
terminated just because it is finished - so the resource is in
the state Free as well.

It turns out that a monolithic Ready state is not sufficient
for the coupling of the execution layer with the management
layer. We introduce sub states as follows:

1) A resource is in the sub state Ready:Free if it is
currently not processing a job - there is also no reserva-
tion for a job. Therefore, an administrative shutdown is
possible in this state.

2) If the resource is reserved by the management layer, the
resource is in the state Ready:Reserved. If the reser-
vation is canceled, the state changes to Ready:Free
again.

3) Otherwise, the job may be started. In this case, the
resource changes to the Ready:Starting state. Note
that the transition “startJob” is the attempt to start the
job, involving all necessary operations. The start might
fail, e.g. because the input data staging failed - the
resource changes to Ready:Free in this case. Oth-
erwise, the job has started successfully and the resource
is in the state Running.

Please note that the resource model is an important part of the
Calana protocol, but not discussed below explicitly.

IV. THE PROTOCOL

The protocol specification consists of two parts: The def-
inition of the individual messages as an XML Schema and
the definition of the behavior of the daemons. The latter is
described using PROMELA, the input language of the protocol
verifier SPIN [6]. It is possible to use linear temporal formulae
to prove properties of the overall system automatically. We will
discuss some properties later in section V.

The complete model is given in appendix A. We intro-
duce the protocol by giving some examples of possible mes-

Terminated

Failed

Finished:
Closed

Running:
Stage-In

Running:
Executing

Running:
Stage-out

Pending:
Negotiating

Pending:
Confirmed

Pending:
New

Finished:
Closing

Fig. 3. The Calana job model. It extends the previously shown OGSA-BES job model by adding an advance reservation stage, file staging operations and
finished acknowledgments.

Down Running

Ready:
Reserved

Ready:
Starting

Ready:
Free

Ready

reserve

remove
reservation

startJob

startJob_failed

ready

shutdown

startJob_success

terminateJob_success

terminateJob_failure

resource_failure

resource_failure

abortJob

Fig. 4. The state model of a resource as seen from other entities in the grid.

sage exchanges. The protocol has two parts: The workload
manager-broker protocol and the broker-provider protocol.
Both are nested: The interaction between the workload man-
ager and broker triggers interaction between the broker and
the providers.

A. Use case: successful execution of a job

In this first use case we demonstrate the successful execu-
tion of a job. The allocation is made and the corresponding
igor runs the job without any problems, see fig. 5.

The first message is sent from the igors to their agents in

order to notify them that the igor is available for jobs. The
workload manager starts the scheduling process by sending a
BookingRequest to the broker. The latter then starts an auction
by broadcasting a BookingRequest to all attached providers.
The providers may now consider this request and choose
to answer with a bid. Before the bid is sent, a reservation
message tells the igor that it might be running a job in the next
time, thus preventing it to shut down. The broker selects the
best bid and sends an AuctionAccept message to the winning
provider and broadcasts a AuctionDeny message to the others.
If a provider receives the AuctionDeny message, it sends a

WLM Broker Provider 1 Provider 2

BookingReq
BookingReq BookingReq

AuctionBid
AuctionBid

AuctionAccept
AuctionDeny

Booked
Confirm

Closed

ClosedAck

Confirm

Closed

ClosedAck

Igor1 Igor2

startJob

ready

terminateJob_success

ready

reserve

startJob_success

reserve

removeReservation
Booked

Fig. 5. Example of a successful execution.

removeReservation message to its igor.

So far, there is no binding contract between the workload
manager and the provider. This is achieved in the next phase:
the broker sends a Booked message to the workload manager.
The workload manager can now decide whether to accept the
offer or not, possibly interacting with its user. At this point, the
user can decide whether the proposed resource is acceptable,
i.e. from a security viewpoint. When accepting the bid, the
workload manager will respond with the Confirm message. As
soon as the broker has received it, there is a binding contract
between the provider and the workload manager. The terms of
the contract will now be billed.

The broker now forwards this message to the provider. The
workload manager and provider systems may now interact
directly in order to process the requested job, which is out
of the scope of the broker. In this example, the workload
manager sends a “startJob” message directly to the igor. In
real implementations, this would be replaced by several calls,
e.g. to transfer files and various job control commands. These
invocations must always occur between the workload manager
and the igor directly.

When the job finishes, the igor sends a “terminate-
Job success” message to the provider. The broker is notified
by receiving a Closed message from the provider. Although
this could also be done directly between the workload manager
and the provider, the broker needs to be notified for account-
ing purposes. The broker then forwards the message to the
workload manager. Both Closed messages are acknowledged
by a CloseAck message.

B. Use case: The provider cancels

During each phase of the protocol, it is possible that both
workload manager and provider cancel the process. In order to
account correctly for the failure, the broker needs to be notified
as well. An example of provider cancellation is shown in fig.
6.

In this case, the provider cancels the execution during the
lifetime of the agreement of the job: The auction has finished
and the workload manager agreed to the scheduling result. The
job was started, but the igor failed to start the job. It notifies the
provider. The provider itself sends a ProviderCancel message
which may contain some information why the execution has
failed, e.g. due to resource outtakes or segfault of the software.

The workload manager is notified, and both workload
manager and broker acknowledge the result. The broker can
then account for the failure and move the corresponding money
back. If a reliability metric is used during scheduling, it would
also update the reliability score of the provider.

C. Use case: The workload manager cancels

In this use case, the workload manager cancels before
he has confirmed a reservation, see fig. 7. This might be
the case because the proposed resource doesn’t fulfill the
user’s non-technical requirements. This means since there was
no commitment, no payment needs to be made. Again, the
workload manager sends out a ConsumerCancel message. The
broker forwards this to the winning provider, which responds
with an ConsumerCancelAck message. It is forwarded to the
workload manager. In the meantime the reservation of the igor
is removed.

WLM Broker Provider 1 Provider 2

BookingReq
BookingReq

BookingReq

AuctionBid
AuctionBid

AuctionAccept
AuctionDeny

Booked
Confirm

ProviderCancel

ProviderCancelAck

Confirm

ProviderCancel

ProviderCancelAck

Igor1

StartJob

ready

Igor2

ready

reserve

startJob_failed

reserve

removeReservationBooked

Fig. 6. The provider cancels the execution after the auction phase is finished.

V. VERIFICATION OF THE PROTOCOL

Since we intend to charge users real money for used
services, we need to be certain that the protocol works
as intended. In general, one can distinguish simulation and
testing, deductive verification and model checking methods for
the validation of complex applications [7]. Both simulation and
testing observe the output of a system under a given input. In
general, it is not possible to test or simulate all possible inputs,
thus no complete verification is possible. In contrast, deductive
and model verification allow a complete verification of a given
model. Deductive verification is mostly a manual process and
therefore time-consuming.

For our work, we choose model verification as verification
technique. Model checking takes a model and a specification
as input and checks whether the model fulfills the specification
at all times [?]. If not, a trace is given which allows the
user to reconstruct the behaviour of the system leading to the
specification violation.

We use SPIN to verify our model [6]. The models are
specified in a C-like language calle PROMELA. A PROMELA
model consists of the definition of processes and the messages
which are exchanged through FIFO pipelines. This makes
SPIN a good choice for the verification of distributed systems
- SMV [8] for example employs data transfer via shared
variables, which is not a good match for communication
protocols. SPIN translates the model in finite state automata
and enumerates all possible states of the whole model. It is
possible to check for liveliness and deadlocks. In addition,

one can check specifications written as linear temporal logic
formulae.

The model has been verified completely without any restric-
tion of the state-space. In order not to overlook any potential
problems, we implemented the model in a generic way: For
example, the provider winning an auction is chosen randomly.
It is also possible to change the number of participating
providers (and igors). However, even for an simplified version
of the model, we were not able to verify models with more
than five provider-igor pairs due to the state-space explosion.
The verification was executed on a 2.4 Ghz Opteron machine
with 8GB RAM. The model took approx. 6 GB of RAM to
run completely in 12 minutes. We were able to prove that the
model is deadlock-free and alive for all system states.

We proved several specification properties with regard to
the requirements of our customers (see section II-C). By
construction of the protocol, the user can identify the provider
and vice versa. In addition, they can use different metrics
for the selection of the resource: price and performance are
currently supported during the auction phase. Although not
implemented at the moment, the broker could integrate a credit
ranking for each user request so that providers can assess the
user’s request. Another option would be to integrate payment
services with the broker directly. In the following sections, we
present the verification of several important properties of the
protocol itself. Since the broker needs to be able to provide
accounting information the protocol must guarantee to deliver
a unified view for all stakeholders.

The properties, given as linear temporal logic formulae, can

WLM Broker Provider 1 Provider 2

BookingReq
BookingReq

BookingReq

AuctionBid
AuctionBid

AuctionAccept

AuctionDeny
ConsumerCancel

ConsumerCancelAck

ConsumerCancel

ConsumerCancelAck

Igor2Igor1

ready ready

removeReservation

reservereserve

removeReservation

Fig. 7. The workload manager cancels the BookingRequest after the broker has received some bids, no agreement is made.

Outcome Description
U Undefined - this is the initial value.
BR The booking was rejected.
SE Successful execution of the job.
FE Failed execution of the job.
UC User canceled the job.
PC Provider canceled the job.
Job state Description
JFC The job is in state “Finished:Closed”
JPC The job is in state “Pending:Confirmed”

TABLE I
THE OUTCOME DEFINITIONS FOR THE PROTOCOL (UPPER PART) AND

JOB-RELATED PREDICATES (LOWER PART).

be converted to Buechli-automata automatically. The Buechli-
automata are then evaluated for all states of the model
- usually, the property holds if the negated form of the
corresponding Buechli-automaton does not terminate during
the verification. An example of an LTL formula and the
corresponding automaton is given in appendix B.

In order to simplify the verification, we introduced outcomes
for all daemons, see table I. Each daemon updates the value
of its outcome variable according to the messages it receives.
It is now easy to verify properties based on the values of these
variables. We also use the predicates defined in table I to refer
to certain states of the underlying job. We use the symbol W
for the workload manager, B for the broker and P for the
provider which has won the auction. The other providers are
not discussed here.

Amongst others, we have proven these properties for the
protocol 2:

1) The outcome of the workload manager is always defined:

2We use the “standard” symbols for temporal logic: �p means “always
p” - the term p is an invariant. ♦p means “eventually p” and describes the
guarantee that p will hold in the end.

� (W ∈ {U, BR, SE, FE, UC, PC}). Similar properties hold
for the broker and provider daemons.

2) If the job has finished successfully, the broker records
the outcome to be successful: � (JFC→ (B = SE))

3) Eventually, the workload manager has the same outcome
as the broker: � (♦ (W = B) = P)). The broker and
the provider have eventually the same outcome if the
booking was not rejected: � ((¬BR) → ♦ (P = B))).

4) If the consumer cancels a job, he must pay for it - except
the provider canceled earlier. The provider cancellation
has a higher priority than the consumer’s cancellation:
� ((JPC ∧ UC) →
♦ (B = UC) ∨ ♦ ((B = PC) ∨ (B = SE)))

5) If the provider cancels an already confirmed job, it
needs to pay for it - except the job finished earlier:
� ((JPC ∧ PC)
→ ♦ ((B = PC) ∨ (B = SE)))

VI. RELATED WORK

Commercial offerings of computational resources are still
niche products. Amazon’s EC2 is amongst the popular ones,
but SUN and IBM offer on-demand access to their datacenters
as well [1]. So far, these vendors address mostly business
consumers and maintain a closed-environment infrastructure
- it is not possible to access all resources using e.g. Globus as
a middleware. On the other hand, scientific grid initiatives like
the German D-Grid are opening towards the commercial use of
their infrastructures. We believe that computing power will be
easily accessible in the future using standardized middlewares.

We envision a market for computational resources with a
need for brokering services such as Calana. Cheliotis et al.
share this vision and strongly vote for using markets in order
to coordinate the demand and offer of computational power
[2]. They also advocate the use of real money instead of an
artificial intermediate currency as a way of simplifying the

valuation of grid resources. Buyya et al. suggest an adaptive
scheduling algorithm to prioritize the jobs based on their
desired deadlines given a fixed budget [9], while Ernemann et
al. focus on agents with strategies [10]. Early works include
Waldspurgers Spawn architecture [11]. We have presented our
market architecture in an earlier paper [3].

There is a lot of literature available concerning the design
of electronic markets. Auctions provide an easy way of coor-
dinating demand and supply in various markets, ranging from
flowers to next generation mobile network frequencies [12]
[4]. The discussion of the economic theory is out of the scope
of this paper.

For a market to be successful, it needs to show correct
behaviour under all circumstances. Various ways of collusion
can destroy the trust in a market quickly. The field of agent-
based computational economics provides a lot of information
regarding the construction of markets and strategies for agents
[13] [14].

There are first steps towards the adoption of market-based
use of computational resources. The GRAAP-RG of the Open
Grid Forum has published the “Web Services Agreement
Specification” which specifies how to use webservice calls to
find agreements between two parties [15]. However, there is no
integration with the execution layer or a market. This makes
it difficult to provide billing services since the real outcome
of a job is not known.

On the other hand, the software systems implementing
the market need to be solid as well. We found the model
checking approach to be very beneficial to the development
of our protocol. There are several systems for model checking
available, including SMV [8] and SPIN [6] [16]. Other systems
like Bandera [17] or Java Pathfinder [18] aim at the automatic
extraction of models from source code, e.g. given in Java.
Since we developed the model before we actually implemented
it, these tools do not provide any advantage for us. SPIN has
been used in many applications, e.g. the verification of a space
craft controller [19]. Kuo et al. presented a verification of a
resource allocation protocol for grid environments [20]. We
are not aware of any other formal verification in the field of
grid scheduling.

VII. CONCLUSION

The Calana protocol has been implemented in both simu-
lations and real implementations. We allow users to identify
the resource providers and exploit competition through market
prices. Both users and providers can cancel the job at any
time - the broker will assign penalties for this. The broker can
provide a complete audit trail of a job - we can guarantee that
all stakeholders eventually assume the same state for the job.

There are still open tasks, mainly from the area of bidding
strategy and job estimates. For example, even when the appli-
cation runtime is known in advance, it is difficult to orchestrate
file transfers such that all input files are available for the job on
time. In addition, it will be necessary to incorporate software
licenses in the scheduling process.

We also intend to couple the broker with a billing and
accounting service that can provide user accounts. This way,
the broker could check the financial standing of a user before
making contracts.

ACKNOWLEDGMENT

The authors would like to thank the Fraunhofer Institut für
Techno- und Wirtschaftsmathematik and professor Peter Merz
for their continuing support. This work was supported by the
German Federal Ministry of Education and Research under
the contract 01G07009A-D.

REFERENCES

[1] (2007) Amazon Elastic Compute Cloud. [Online]. Available: http:
//aws.amazon.com/ec2

[2] G. Cheliotis, C. Kenyon, and R. Buyya, “Grid Economics: 10 Lessons
from Finance,” in Peer-to-Peer Computing: Evolution of a Disruptive
Technology, Ramesh Subramanian and Brian Goodman (editors), Idea
Group Publisher, Hershey, PA, USA, 2004.

[3] M. Dalheimer, F. Pfreund, and P. Merz, “Agent-based Grid Scheduling
with Calana,” in Proceedings of the Second Grid Resource Management
Workshop (GRMW 2005), Poznan, Poland, 2005.

[4] W. E. Walsh, M. P. Wellman, P. R. Wurman, and J. K. MacKie-
Mason, “Some Economics of Market-Based Distributed Scheduling,” in
International Conference on Distributed Computing Systems, 1998, pp.
612–621.

[5] (2007) OGSA Basic Execution Service Version 1.0. [Online]. Available:
http://www.ogf.org/documents/GFD.108.pdf

[6] G. J. Holzmann, “The Model Checker SPIN,” Software Engineering,
vol. 23, no. 5, pp. 279–295, 1997.

[7] E. M. Clarke, O. Grumberg, and D. A. Peled, Model Checking. Cam-
bridge, MA: The MIT Press, 1999.

[8] K. L. McMillan, “Symbolic Model Checking: An Approach to the State
Explosion Problem,” 1992, PhD Thesis, Carnegie Mellon University,
1992. CMU-CS-92-131.

[9] R. Buyya and M. Murshed, “A Deadline and Budget Constrained Cost-
Time Optimize Algorithm for Scheduling Parameter Sweep Applications
on the Grid,” 2001.

[10] C. Ernemann, V. Hamscher, and R. Yahyapour, “Economic Scheduling in
Grid Computing,” in Job Scheduling Strategies for Parallel Processing.
Springer, LNCS 2537, 2002.

[11] C. A. Waldspurger, T. Hogg, B. A. Huberman, J. O. Kephart, and W. S.
Stornetta, “Spawn: A Distributed Computational Economy,” Software
Engineering, vol. 18, no. 2, pp. 103–117, 1992.

[12] M. Wellman, W. Walsh, P. Wurman, and J. MacKie-Mason, “Auction
Protocols for Decentralized Scheduling,” 1998.

[13] W. B. Arthur, J. H. Holland, B. LeBaron, R. Palmer, and P. Tayler,
“Asset Pricing under Endogenous Expectations in an Artificial
Stock Market,” in Preprint from: The Economy as an Evolving Complex
System II, Santa Fe Institute Studies in the Sciences of Complexity, Vol.
XXVII, Addison-Wesley, 1996. [Online]. Available: http://www.econ.
iastate.edu/tesfatsi/ahlpt96.pdf

[14] J. O. Kephart, J. E. Hanson, and A. R. Greenwald, “Dynamic pricing by
software agents,” Computer Networks (Amsterdam, Netherlands: 1999),
vol. 32, no. 6, pp. 731–752, 2000.

[15] (2007) Web services agreement specification. [Online]. Available:
http://www.ogf.org/documents/GFD.107.pdf

[16] G. J. Holzmann, The Spin Model Checker. Amsterdam: Addison-Wesley
Longman, 2003.

[17] J. C. Corbett, M. B. Dwyer, J. Hatcliff, S. Laubach, C. S. Păsăreanu,
Robby, and H. Zheng, “Bandera: extracting finite-state Models from Java
Source Code,” in International Conference on Software Engineering,
2000, pp. 439–448.

[18] K. Havelund and T. Pressburger, “Model Checking Java Programs
using Java PathFinder,” International Journal on Software Tools for
Technology Transfer, vol. 2, Apr. 2000.

[19] K. Havelund, M. R. Lowry, and J. Penix, “Formal Analysis of a Space-
Craft Controller Using SPIN.” IEEE Trans. Software Eng., vol. 27, no. 8,
pp. 749–765, 2001.

[20] D. Kuo and M. McKeown, “Advance Reservation and Co-Allocation
Protocol For Grid Computing,” University of Manchester, Tech. Rep.,
2005.

APPENDIX A
THE PROMELA MODEL OF CALANA

We provide the full PROMELA model we used in this appendix. It is structured as follows:
1) Global variables and helper routines are defined in the first section. Beside adjustable parameters, we define the message

types, state variables and other globally used variables. Starting with line 76, we define some functions to encapsulate
the transitions of the job finite state machine.

2) The workloadmanager process definition starts in line 200. The process is structured as a state machine with labels
corresponding to the states of the process.

3) In line 270, the broker process definition starts. Please note that we choose the best bid randomly, see lines 290-305.
There is no simplification of the selection process, so no agent will be prefered.

4) The provider definition starts in line 442. Note that each provider process is given an ID which is used to determine
which channels to use. For each ID, there is a corresponding igor.

5) The igor is defined in line 590. We do not model the startup and shutdown of the job explicitly, so this process definition
is a very simple state machine.

6) Finally, in line 648, we give the init process. This process is started by SPIN at the very beginning of the verification
process. Here, we start all other processes and wait for their completion. After the other processes are finished, we
investigate some state variables.

Note that the definition of the LTL formulae and the corresponding Buechli automata is stored in separate files. The inline
comments provide more information on the model.

1 /∗ Number o f a t t a c h e d a g e n t s ∗ /
2 # d e f i n e N 2
3 /∗ Number o f messages t h a t can be i n a c h a n n e l s i m u l t a n e o u s l y ∗ /
4 # d e f i n e c h a n S i z e 2
5

6 /∗ Messages ∗ /
7 mtype={BookingReq , Auct ionBid , Auc t ionAccep t , AuctionDeny ,
8 Booked , Confirm , Close , CloseAck , Book ingRe jec t ed , BookingRejec tedAck ,
9 P r o v i d e r C a n c e l , P rov ide rCance lAck , WLMCancel , WLMCancelAck}

10

11 /∗ Communicat ion t o and from t h e I g o r s ∗ /
12 mtype={ ready , shutdown , r e s e r v e , r e m o v e R e s e r v a t i o n , s t a r t J o b ,
13 s t a r t J o b s u c c e s s , s t a r t J o b f a i l u r e ,
14 runn ing , t e r m i n a t e J o b s u c c e s s , t e r m i n a t e J o b f a i l u r e ,
15 a b o r t J o b , t e r m i n a t e , r e s o u r c e F a i l u r e , }
16

17 /∗ The agreed outcomes ∗ /
18 # d e f i n e UndefinedOutcome 0
19 # d e f i n e BookingRejec tedOutcome 1
20 # d e f i n e S u c c e s s f u l E x e c u t i o n O u t c o m e 2
21 # d e f i n e F a u l t e d E x e c u t i o n O u t c o m e 3
22 # d e f i n e WLMCanceledOutcome 4
23 # d e f i n e Prov ide rCance l edOu tcome 5
24

25 /∗ D e f i n e j o b s t a t e s : J o b S t a t e S u b s t a t e ∗ /
26 # d e f i n e JobPending New 1
27 # d e f i n e J o b P e n d i n g N e g o t i a t i n g 2
28 # d e f i n e JobPending Booked 3
29 # d e f i n e JobPend ing Conf i rmed 4
30 # d e f i n e J o b R u n n i n g S t a g e I n 5
31 # d e f i n e JobRunn ing Execu t ing 6
32 # d e f i n e JobRunning StageOut 7
33 # d e f i n e J o b F i n i s h e d C l o s i n g 8
34 # d e f i n e J o b F i n i s h e d C l o s e d 9
35 # d e f i n e J o b F a i l e d 10
36 # d e f i n e J o b T e r m i n a t e d 11
37

38 /∗ D e f i n e t h e Job S t a t e machine as a s e q u e n c e o f i n l i n e s
39 ∗ which check whe ther a t r a n s i t i o n i s a l l o w e d . They a l l t a k e t h e
40 ∗ J o b S t a t e V a r i a b l e (WLM, Broker , P r o v i d e r) t o chanke and a p p l y

41 ∗ a s s e r t s t a t e m e n t s b e f o r e chang ing t h e s t a t e .
42 ∗ /
43 # d e f i n e i s JobFSMEnds t a t e (s t a t e) (s t a t e == J o b F i n i s h e d C l o s e d \
44 | | s t a t e == J o b F a i l e d | | s t a t e == J o b T e r m i n a t e d)
45

46 /∗ P r e d i c a t e t o check whe ther t h e g i v e n ID has won t h e a u c t i o n . ∗ /
47 # d e f i n e i s W i n n e r (i d) (i d == winnerID)
48

49 /∗ Globa l v a r i a b l e s ∗ /
50 byte WLMOutcome , BrokerOutcome , Prov ide rOutcome = UndefinedOutcome ;
51 byte WLMJobFSM, BrokerJobFSM = JobPending New ;
52 byte p r o v i d e r J o b F S M C o l l e c t i o n [N] = 0 ;
53 byte w a i t =0 ;
54 bool i s C o n f i r m e d = f a l s e ;
55 bool wlmCanceled = f a l s e ;
56 bool p r o v i d e r C a n c e l e d = f a l s e ;
57

58 /∗A number o f c h a n n e l s t o and from t h e p r o v i d e r ∗ /
59 chan a2b [N] = [c h a n S i z e] of {mtype } ;
60 chan b2a [N] = [c h a n S i z e] of {mtype } ;
61

62 /∗A number o f c h a n n e l s from t h e i g o r t o t h e p r o v i d e r and back ∗ /
63 chan p 2 i [N] = [c h a n S i z e] of {mtype } ;
64 chan i 2 p [N] = [c h a n S i z e] of {mtype } ;
65

66 /∗A number o f c h a n n e l s from t h e wlm t o t h e i g o r ∗ /
67 chan c 2 i [N] = [c h a n S i z e] of {mtype } ;
68

69 /∗ S t o r e t h e ID o f t h e a u c t i o n winner − we need t o s h a r e t h i s be tween
70 ∗ wlm and b r o k e r . ∗ /
71 s h o r t winnerID =−1;
72

73 /∗ A g l o b a l v a r i a b l e used as i n d e x i n l o o p s . don ’ t use e l s e w h e r e , be
74 ∗ c a r e f u l w i t h i n i t i a l i z a t i o n . ∗ /
75 byte i ;
76

77 i n l i n e s t a r t N e g o t i a t i o n (jobFSM) {
78 d step {
79 a s s e r t (jobFSM == JobPending New) ;
80 jobFSM = J o b P e n d i n g N e g o t i a t i n g ;
81 } ;
82 }
83

84 i n l i n e booked (jobFSM) {
85 d step {
86 a s s e r t (jobFSM == J o b P e n d i n g N e g o t i a t i n g) ;
87 jobFSM = JobPending Booked ;
88 }
89 }
90

91 i n l i n e c o n f i r m (jobFSM) {
92 d step {
93 a s s e r t (jobFSM == JobPending Booked) ;
94 jobFSM = JobPend ing Conf i rmed ;
95 }
96 }
97

98 i n l i n e r u n J o b S t a g e I n (jobFSM) {
99 d step {

100 a s s e r t (jobFSM == JobPend ing Conf i rmed) ;
101 jobFSM = J o b R u n n i n g S t a g e I n ;
102 }
103 }
104

105 i n l i n e r u n J o b e x e c u t e (jobFSM) {
106 d step {
107 a s s e r t (jobFSM == J o b R u n n i n g S t a g e I n) ;

108 jobFSM = JobRunn ing Execu t ing ;
109 }
110 }
111

112 i n l i n e r u n J o b S t a g e O u t (jobFSM) {
113 d step {
114 a s s e r t (jobFSM == JobRunn ing Execu t ing) ;
115 jobFSM = JobRunning StageOut ;
116 }
117 }
118

119 i n l i n e c l o s e J o b c l o s i n g (jobFSM) {
120 d step {
121 a s s e r t (jobFSM == JobRunning StageOut) ;
122 jobFSM = J o b F i n i s h e d C l o s i n g ;
123 }
124 }
125

126 i n l i n e c l o s e J o b c l o s e d (jobFSM) {
127 d step {
128 a s s e r t (jobFSM == J o b F i n i s h e d C l o s i n g) ;
129 jobFSM = J o b F i n i s h e d C l o s e d ;
130 }
131 }
132

133 i n l i n e t e r m i n a t e J o b (jobFSM) {
134 d step {
135 /∗ We can t e r m i n a t e a j o b as long as i t i s n o t J o b F i n i s h e d C l o s i n g
136 ∗ or J o b F i n i s h e d C l o s e or J o b F a i l e d . ∗ /
137 a s s e r t (jobFSM != J o b F i n i s h e d C l o s i n g && jobFSM != J o b F i n i s h e d C l o s e d
138 && (! i s JobFSMEnds t a t e (jobFSM))) ;
139 jobFSM = J o b T e r m i n a t e d ;
140 }
141 }
142

143 i n l i n e f a i l J o b (jobFSM) {
144 d step {
145 /∗ A j o b can f a i l o n l y i f t h e j o b i s i n a r u n n i n g s u b s t a t e . ∗ /
146 a s s e r t (jobFSM == J o b R u n n i n g S t a g e I n | | jobFSM == JobRunn ing Execu t ing
147 | | JobRunning StageOut) ;
148 jobFSM = J o b F a i l e d ;
149 }
150 }
151

152 /∗ Macro t h a t s e n d s a message t o a l l p r o v i d e r s ∗ /
153 i n l i n e b r o a d c a s t 2 P (msg) {
154 d step {
155 i = 0 ;
156 do
157 : : (i<N) −> b2a [i] ! msg ; i = i +1 ;
158 : : e l s e −> break ;
159 od ;
160 i = 0 ;
161 }
162 }
163

164 i n l i n e b r o a d c a s t 2 P E x c e p t (msg , e x c e p t I D) {
165 d step {
166 i =0 ;
167 do
168 : : ((i<N) && ! (i == e x c e p t I D)) −> b2a [i] ! msg ; i = i +1 ;
169 : : (i == e x c e p t I D) −> i = i +1 ;
170 : : e l s e −> break ;
171 od ;
172 i =0 ;
173 }
174 }

175

176 /∗ Removes a l l messages from t h e g i v e n c h a n n e l ∗ /
177 i n l i n e c l e a n u p c h a n n e l (c u r r e n t) {
178 do
179 : : a2b [i] ? P r o v i d e r C a n c e l −> b2a [i] ! P r o v i d e r C a n c e l A c k ;
180 : : empty (a2b [i]) −> break ;
181 : : e l s e −> a2b [i] ? ;
182 od ;
183 }
184

185 /∗ Remove a l l messages from t h e p r o v i d e r−to−b r o k e r c h a n n e l s ∗ /
186 i n l i n e c l e a n u p a 2 b c h a n n e l s () {
187 d step {
188 i =0 ;
189 do
190 : : (i<N) −> c l e a n u p c h a n n e l (i) ; i = i +1 ;
191 : : e l s e −> break ;
192 od ;
193 i =0 ;
194 }
195 }
196

197 /∗ ### ∗ /
198

199

200 proctype wlm (chan out , i n) {
201 WLMJobFSM = JobPending New ;
202 S t I n i t i a l :
203 s t a r t N e g o t i a t i o n (WLMJobFSM) ;
204 o u t ! BookingReq −> goto StBooking ;
205 StBooking :
206 i f
207 : : i n ? Booked −> booked (WLMJobFSM) ; goto StBooked ;
208 : : i n ? B o o k i n g R e j e c t e d −> goto S t R e j e c t i n g ;
209 : : o u t ! WLMCancel −> goto StWLMCancelling ;
210 f i ;
211 StBooked :
212 i f
213 : : i n ? P r o v i d e r C a n c e l −>
214 t e r m i n a t e J o b (WLMJobFSM) ; goto S t P r o v i d e r C a n c e l l i n g ;
215 : : o u t ! Confirm −> c o n f i r m (WLMJobFSM) ; goto StConf i rmed ;
216 : : o u t ! WLMCancel −> goto StWLMCancelling ;
217 f i ;
218 StConf i rmed :
219 /∗ Run t h e j o b ! ∗ /
220 c 2 i [winnerID] ! s t a r t J o b ;
221 r u n J o b S t a g e I n (WLMJobFSM) ;
222 r u n J o b e x e c u t e (WLMJobFSM) ;
223 r u n J o b S t a g e O u t (WLMJobFSM) ;
224 i f
225 : : i n ? Close −> goto S t C l o s i n g ;
226 : : i n ? P r o v i d e r C a n c e l −> goto S t P r o v i d e r C a n c e l l i n g ;
227 : : o u t ! WLMCancel −> goto StWLMCancelling ;
228 f i ;
229 S t C l o s i n g :
230 c l o s e J o b c l o s i n g (WLMJobFSM) ;
231 o u t ! CloseAck ;
232 WLMOutcome = S u c c e s s f u l E x e c u t i o n O u t c o m e ;
233 c l o s e J o b c l o s e d (WLMJobFSM) ;
234 goto S t T e r m i n a t e d ;
235 StWLMCancelling :
236 i f
237 : : i n ?WLMCancelAck −>
238 WLMOutcome=WLMCanceledOutcome ;
239 t e r m i n a t e J o b (WLMJobFSM) ;
240 goto S t T e r m i n a t e d ;
241 : : i n ? Booked −> goto StWLMCancelling ;

242 /∗ The Booking was con f i rmed , b u t WLM c a n c e l l e d
243 i n t h e meant ime ∗ /
244 : : i n ? P r o v i d e r C a n c e l −> goto S t P r o v i d e r C a n c e l l i n g ;
245 /∗ I f t h e p r o v i d e r c a n c e l s , i t i s h i s r e s p o n s i b i l i t y ! ∗ /
246 : : i n ? Close −> goto S t C l o s i n g ;
247 /∗ I t i s a lways p o s s i b l e t h a t t h e j o b has j u s t f i n i s h e d ∗ /
248 : : i n ? B o o k i n g R e j e c t e d −> goto S t R e j e c t i n g ;
249 /∗ There i s n o t h i n g t o cance l , so we ’ re f i n e . . . ∗ /
250 f i ;
251 S t P r o v i d e r C a n c e l l i n g :
252 o u t ! P r o v i d e r C a n c e l A c k ;
253 WLMOutcome= Prov ide rCance l edOu tcome ;
254 f a i l J o b (WLMJobFSM) ;
255 goto S t T e r m i n a t e d ;
256 S t R e j e c t i n g :
257 o u t ! BookingRejec tedAck ;
258 WLMOutcome = BookingRejec tedOutcome ;
259 t e r m i n a t e J o b (WLMJobFSM) ;
260 goto S t T e r m i n a t e d ;
261 S t T e r m i n a t e d :
262 goto End ;
263 End : atomic {w a i t = w a i t + 1 ;}
264 }
265

266

267 /∗ ### ∗ /
268

269

270 /∗ T h i s p r o c t y p e s i m u l a t e s t h e Broker and t h e WLM o f t h e r e s o u r c e ∗ /
271 proctype b r o k e r (chan c l i e n t O u t , c l i e n t I n) {
272 BrokerJobFSM = JobPending New ;
273 s h o r t c o u n t e r =0;
274 i s C o n f i r m e d = f a l s e ;
275 S t I n i t i a l :
276 i f
277 : : c l i e n t I n ? BookingReq −> goto S t S t a r t A u c t i o n ;
278 f i ;
279 S t S t a r t A u c t i o n :
280 s t a r t N e g o t i a t i o n (BrokerJobFSM) ;
281 b r o a d c a s t 2 P (BookingReq) ;
282 goto StAuc t ionRunn ing ;
283 StAuc t ionRunn ing :
284 do
285 /∗ e i t h e r we read a message ∗ /
286 : : (c o u n t e r < N) −>
287 do
288 /∗ For a l l message c h a n n e l s , t r y t o read a message ∗ /
289 : : (c o u n t e r < N) −>
290 i f
291 : : a2b [c o u n t e r] ? Auc t ionBid −>
292 i f
293 : : winnerID == −1 −> winnerID = c o u n t e r ; /∗ f i r s t b i d ∗ /
294 : : e l s e −>
295 /∗ T h i s i s one o f t h e f o l l o w i n g b i d s − 50% chance o f
296 ∗ b e i n g b e s t b i d !
297 ∗ /
298 i f
299 /∗ t h i s i s t h e b e s t b i d ∗ /
300 : : sk ip −> winnerID = c o u n t e r ;
301 : : sk ip ; /∗ i t s n o t . . . ∗ /
302 f i ;
303 f i ;
304 : : sk ip /∗ e l s e −> s k i p ; /∗ s k i p i s r e d u n d a n t here . ∗ /
305 f i ; c o u n t e r = c o u n t e r + 1 ;
306 : : e l s e −> break ;
307 od ; /∗ T r i e d t o read from a l l c h a n n e l s ∗ /
308 /∗ or we end t h e a u c t i o n . ∗ /

309 : : e l s e −> c o u n t e r = 0 ; break ;
310 od ;
311 p r o g r e s s : goto StAuc t ionEnd ;
312 StAuc t ionEnd :
313 /∗ Do we have a b i d ? ∗ /
314 i f
315 : : (winnerID == −1) −> goto StNoBid ;
316 : : e l s e −> sk ip ;
317 f i ;
318 /∗ We b r o a d c a s t t h e r e s u l t o f t h e a u c t i o n . However , f o r ∗ /
319 /∗ t h e s t a t e , i t i s n o t n e c e s s a r y t o e v a l u a t e t h e c o n t e n t s ∗ /
320 /∗ o f t h e B r o a d c a s t message . ∗ /
321 b2a [winnerID] ! Auc t ionAccep t ;
322 b r o a d c a s t 2 P E x c e p t (AuctionDeny , winnerID) ;
323 i f
324 : : a2b [winnerID] ? Booked −> goto StBooking ;
325 : : a2b [winnerID] ? B o o k i n g R e j e c t e d −> goto S t P r o v i d e r R e j e c t i n g ;
326 : : c l i e n t I n ?WLMCancel −> goto StWLMCancelling ;
327 f i ;
328 StNoBid :
329 i f
330 : : c l i e n t O u t ! B o o k i n g R e j e c t e d −>
331 goto S t R e j e c t i n g W a i t F o r C l i e n t ;
332 f i ;
333 StBooking :
334 i f
335 : : c l i e n t O u t ! Booked −> booked (BrokerJobFSM) ; goto StBooked ;
336 : : c l i e n t I n ?WLMCancel −> goto StWLMCancelling ;
337 f i ;
338 StBooked :
339 i f
340 : : c l i e n t I n ?WLMCancel −> goto StWLMCancelling ;
341 : : a2b [winnerID] ? P r o v i d e r C a n c e l −> goto S t P r o v i d e r C a n c e l l i n g ;
342 : : c l i e n t I n ? Confirm −> goto StConf i rmed ;
343 f i ;
344 StConf i rmed :
345 i s C o n f i r m e d = t rue ;
346 c o n f i r m (BrokerJobFSM) ;
347 b2a [winnerID] ! Confirm ;
348 /∗ The j o b w i l l be e x e c u t e d by t h e o t h e r e n t i t i e s he re . . . ∗ /
349 r u n J o b S t a g e I n (BrokerJobFSM) ;
350 r u n J o b e x e c u t e (BrokerJobFSM) ;
351 r u n J o b S t a g e O u t (BrokerJobFSM) ;
352 i f
353 : : a2b [winnerID] ? Close −>
354 c l o s e J o b c l o s i n g (BrokerJobFSM) ; goto S t C l o s i n g ;
355 : : a2b [winnerID] ? P r o v i d e r C a n c e l −> goto S t P r o v i d e r C a n c e l l i n g ;
356 : : c l i e n t I n ?WLMCancel −> goto StWLMCancelling ;
357 f i ;
358 S t C l o s i n g :
359 b2a [winnerID] ! CloseAck ;
360 c l i e n t O u t ! C lose ;
361 BrokerOutcome = S u c c e s s f u l E x e c u t i o n O u t c o m e ;
362 c l o s e J o b c l o s e d (BrokerJobFSM) ;
363 StClos ingJumpback : i f
364 : : c l i e n t I n ? CloseAck −> goto S t T e r m i n a t e d ;
365 : : c l i e n t I n ?WLMCancel −> goto StClos ingJumpback ;
366 /∗WLM wants t o cance l , b u t we have a l r e a d y c o m p l e t e d t h e j o b ∗ /
367 f i ;
368 goto S t T e r m i n a t e d ;
369 StWLMCancelling :
370 wlmCanceled = t rue ;
371 b2a [winnerID] ! WLMCancel ;
372 i f
373 : : a2b [winnerID] ? WLMCancelAck −>
374 BrokerOutcome=WLMCanceledOutcome ;
375 t e r m i n a t e J o b (BrokerJobFSM) ;

376 c l i e n t O u t ! WLMCancelAck ;
377 goto S t T e r m i n a t e d ;
378 : : a2b [winnerID] ? Booked −> goto StWLMCancelling ;
379 /∗ The Booking was con f i rmed , b u t WLM c a n c e l l e d
380 i n t h e meant ime ∗ /
381 : : a2b [winnerID] ? Auc t ionBid −> goto StWLMCancelling ;
382 /∗ There i s a b i d i n t h e channe l , b u t we don ’ t need
383 i t any more ∗ /
384 : : a2b [winnerID] ? P r o v i d e r C a n c e l −> goto S t P r o v i d e r C a n c e l l i n g ;
385 /∗ I f t h e p r o v i d e r c a n c e l s , i t i s h i s r e s p o n s i b i l i t y ! ∗ /
386 : : a2b [winnerID] ? Close −>
387 c l o s e J o b c l o s i n g (BrokerJobFSM) ; goto S t C l o s i n g ;
388 /∗ I t i s a lways p o s s i b l e t h a t t h e j o b has j u s t f i n i s h e d ∗ /
389 : : a2b [winnerID] ? B o o k i n g R e j e c t e d −> goto S t P r o v i d e r R e j e c t i n g ;
390 /∗ There i s n o t h i n g t o cance l , so we ’ re f i n e . . . ∗ /
391 f i ;
392 S t P r o v i d e r C a n c e l l i n g :
393 p r o v i d e r C a n c e l e d = t rue ;
394 b2a [winnerID] ! P r o v i d e r C a n c e l A c k ;
395 c l i e n t O u t ! P r o v i d e r C a n c e l ;
396 BrokerOutcome= Prov ide rCance l edOu tcome ;
397 f a i l J o b (BrokerJobFSM) ;
398 goto S t P r o v i d e r C a n c e l l i n g W a i t ;
399 S t P r o v i d e r C a n c e l l i n g W a i t :
400 i f
401 : : c l i e n t I n ? P r o v i d e r C a n c e l A c k −> goto S t T e r m i n a t e d ;
402 : : c l i e n t I n ? Confirm −> goto S t P r o v i d e r C a n c e l l i n g W a i t ;
403 : : c l i e n t I n ?WLMCancel −> goto S t P r o v i d e r C a n c e l l i n g W a i t ;
404 f i ;
405 goto S t T e r m i n a t e d ;
406 S t P r o v i d e r R e j e c t i n g :
407 b2a [winnerID] ! BookingRejec tedAck ;
408 c l i e n t O u t ! B o o k i n g R e j e c t e d ;
409 do
410 : : c l i e n t I n ? BookingRejec tedAck −>
411 BrokerOutcome = BookingRejec tedOutcome ;
412 break ;
413 : : c l i e n t I n ?WLMCancel −> sk ip ;
414 od ;
415 goto S t T e r m i n a t e d ;
416 S t R e j e c t i n g W a i t F o r C l i e n t :
417 i f
418 : : c l i e n t I n ? BookingRejec tedAck −>
419 BrokerOutcome = BookingRejec tedOutcome ;
420 t e r m i n a t e J o b (BrokerJobFSM) ;
421 goto S t R e j e c t i n g W a i t F o r P r o v i d e r ;
422 : : c l i e n t I n ?WLMCancel −> goto S t R e j e c t i n g W a i t F o r C l i e n t ;
423 f i ;
424 goto S t T e r m i n a t e d ;
425 S t R e j e c t i n g W a i t F o r P r o v i d e r :
426 b r o a d c a s t 2 P (B o o k i n g R e j e c t e d) ;
427 goto S t T e r m i n a t e d ;
428 S t T e r m i n a t e d :
429 /∗ The d e c i s i o n o f t h e b r o k e r i s made . I t may occur t h a t we d i d n o t
430 ∗ read some messages − read them now t o keep t h e c h a n n e l empty . ∗ /
431 c l e a n u p a 2 b c h a n n e l s () ;
432 /∗ Same w i t h c l i e n t c h a n n e l . ∗ /
433 c l e a n u p c h a n n e l (c l i e n t I n) ;
434 goto end ;
435 end : atomic { w a i t = w a i t + 1 ;}
436 }
437

438

439 /∗ ### ∗ /
440

441

442 proctype p r o v i d e r (byte i d) {

443 byte ProviderJobFSM = p r o v i d e r J o b F S M C o l l e c t i o n [i d] ;
444 ProviderJobFSM = JobPending New ;
445 chan i n = b2a [i d] ;
446 chan o u t = a2b [i d] ;
447 chan t o I g o r = p 2 i [i d] ;
448 chan f r o m I g o r = i 2 p [i d] ;
449 S t I n i t i a l :
450 f r o m I g o r ? r e a d y ;
451 i f
452 : : i n ? BookingReq −> goto StAuc t ionRunn ing ;
453 : : i n ? Auct ionDeny −> goto S t T e r m i n a t e d ;
454 : : f r o m I g o r ? r e s o u r c e F a i l u r e −> goto S t T e r m i n a t e d ;
455 : : f r o m I g o r ? shutdown −> goto S t T e r m i n a t e d ;
456 f i ;
457 StAuc t ionRunn ing :
458 i f
459 /∗ We choose t o b i d or n o t t o b i d ∗ /
460 : : sk ip −>
461 s t a r t N e g o t i a t i o n (ProviderJobFSM) ;
462 o u t ! Auc t ionBid ;
463 t o I g o r ! r e s e r v e ;
464 goto StBooking ;
465 : : sk ip −> goto S t T e r m i n a t e d ;
466 f i ;
467 StBooking :
468 i f
469 : : i n ? Auc t i onAccep t −> sk ip ;
470 : : i n ? Auct ionDeny −> t o I g o r ! r e m o v e R e s e r v a t i o n ; goto S t T e r m i n a t e d ;
471 : : f r o m I g o r ? r e s o u r c e F a i l u r e −>
472 o u t ! P r o v i d e r C a n c e l ;
473 t o I g o r ! t e r m i n a t e ;
474 goto S t P r o v i d e r C a n c e l l i n g ;
475 : : i n ?WLMCancel −> goto StWLMCancelling ;
476 : : i n ? B o o k i n g R e j e c t e d −> goto S t A u c t i o n B o o k i n g R e j e c t i n g ;
477 /∗ Our b i d may a r r i v e t o l a t e : The a u c t i o n migh t have t i m e d o u t . ∗ /
478 /∗ : : t i m e o u t −> go to S t T e r m i n a t e d ; ∗ /
479 f i ;
480 /∗ Now , we have t h e r e s u l t o f t h e a u c t i o n . . . ∗ /
481 i f
482 : : o u t ! Booked −> booked (ProviderJobFSM) ; goto StBooked ;
483 : : o u t ! B o o k i n g R e j e c t e d −> t o I g o r ! r e m o v e R e s e r v a t i o n ; goto S t R e j e c t i n g ;
484 : : i n ?WLMCancel −> goto StWLMCancelling ; f i ;
485 StBooked :
486 i f
487 : : o u t ! P r o v i d e r C a n c e l −> t o I g o r ! r e m o v e R e s e r v a t i o n ; goto S t P r o v i d e r C a n c e l l i n g ;
488 : : f r o m I g o r ? r e s o u r c e F a i l u r e −>
489 o u t ! P r o v i d e r C a n c e l ;
490 t o I g o r ! t e r m i n a t e ;
491 goto S t P r o v i d e r C a n c e l l i n g ;
492 : : i n ? Confirm −>
493 c o n f i r m (ProviderJobFSM) ;
494 goto StConf i rmed ;
495 : : i n ?WLMCancel −> goto StWLMCancelling ;
496 f i ;
497 StConf i rmed :
498 i f
499 : : f r o m I g o r ? s t a r t J o b s u c c e s s −> goto StRunning ;
500 : : f r o m I g o r ? s t a r t J o b f a i l u r e −>
501 o u t ! P r o v i d e r C a n c e l ;
502 t o I g o r ! t e r m i n a t e ;
503 goto S t P r o v i d e r C a n c e l l i n g ;
504 : : i n ?WLMCancel −> goto StWLMCancelling ;
505 f i ;
506 StRunning :
507 r u n J o b S t a g e I n (ProviderJobFSM) ;
508 r u n J o b e x e c u t e (ProviderJobFSM) ;
509 r u n J o b S t a g e O u t (ProviderJobFSM) ;

510 i f
511 : : f r o m I g o r ? t e r m i n a t e J o b s u c c e s s −>
512 o u t ! C lose ;
513 c l o s e J o b c l o s i n g (ProviderJobFSM) ;
514 goto S t C l o s i n g ;
515 : : o u t ! P r o v i d e r C a n c e l −> t o I g o r ! a b o r t J o b ; goto S t P r o v i d e r C a n c e l l i n g ;
516 : : f r o m I g o r ? r e s o u r c e F a i l u r e −>
517 o u t ! P r o v i d e r C a n c e l ;
518 t o I g o r ! t e r m i n a t e ;
519 goto S t P r o v i d e r C a n c e l l i n g ;
520 : : i n ?WLMCancel −> goto StWLMCancelling ;
521 f i ;
522 S t C l o s i n g :
523 i f
524 : : i n ? CloseAck −>
525 Prov ide rOutcome = S u c c e s s f u l E x e c u t i o n O u t c o m e ;
526 c l o s e J o b c l o s e d (ProviderJobFSM) ;
527 goto S t T e r m i n a t e d ;
528 : : i n ?WLMCancel −> goto S t C l o s i n g ;
529 /∗WLM wants t o cance l , b u t we have a l r e a d y c o m p l e t e d t h e j o b ∗ /
530 f i ;
531 StWLMCancelling :
532 t o I g o r ! a b o r t J o b ;
533 o u t ! WLMCancelAck ;
534 Prov ide rOutcome = WLMCanceledOutcome ;
535 t e r m i n a t e J o b (ProviderJobFSM) ;
536 goto S t T e r m i n a t e d ;
537 S t R e j e c t i n g :
538 i f
539 : : i n ? BookingRejec tedAck −>
540 Prov ide rOutcome = BookingRejec tedOutcome ;
541 t e r m i n a t e J o b (ProviderJobFSM) ;
542 goto S t T e r m i n a t e d ;
543 : : i n ?WLMCancel −> goto S t R e j e c t i n g ;
544 : : f r o m I g o r ? r e s o u r c e F a i l u r e −> t o I g o r ! t e r m i n a t e ; goto S t R e j e c t i n g ;
545 f i ;
546 S t A u c t i o n B o o k i n g R e j e c t i n g :
547 t o I g o r ! a b o r t J o b ;
548 o u t ! BookingRejec tedAck ;
549 Prov ide rOutcome = BookingRejec tedOutcome ;
550 t e r m i n a t e J o b (ProviderJobFSM) ;
551 goto S t T e r m i n a t e d ;
552 S t P r o v i d e r C a n c e l l i n g :
553 i f
554 : : i n ? P r o v i d e r C a n c e l A c k −>
555 i f
556 : : (i s W i n n e r (i d)) −>
557 Prov ide rOutcome = Prov ide rCance l edOu tcome ;
558 f a i l J o b (ProviderJobFSM) ;
559 : : e l s e −> sk ip ;
560 f i ;
561 goto S t T e r m i n a t e d ;
562 : : t imeout −>
563 i f
564 : : (i s W i n n e r (i d)) −>
565 Prov ide rOutcome = Prov ide rCance l edOu tcome ;
566 f a i l J o b (ProviderJobFSM) ;
567 : : e l s e −> sk ip ;
568 f i ;
569 goto S t T e r m i n a t e d ;
570 : : i n ? Confirm −> goto S t P r o v i d e r C a n c e l l i n g ;
571 : : i n ? Auc t i onAccep t −> goto S t P r o v i d e r C a n c e l l i n g ;
572 : : i n ? Auct ionDeny −> goto S t P r o v i d e r C a n c e l l i n g ;
573 : : i n ?WLMCancel −> goto S t P r o v i d e r C a n c e l l i n g ;
574 : : i n ? B o o k i n g R e j e c t e d −>
575 o u t ! BookingRejec tedAck ;
576 Prov ide rOutcome = BookingRejec tedOutcome ;

577 goto S t T e r m i n a t e d ;
578 f i ;
579 S t T e r m i n a t e d :
580 t o I g o r ! t e r m i n a t e ;
581 goto end ;
582 end :
583 atomic {w a i t = w a i t + 1 ;}
584 sk ip ;
585 }
586

587 /∗ ### ∗ /
588

589 proctype i g o r (byte i d) {
590 chan t o P r o v i d e r = i 2 p [i d] ;
591 chan f r o m P r o v i d e r = p 2 i [i d] ;
592 chan fromWLM= c 2 i [i d] ;
593 StDown :
594 t o P r o v i d e r ! r e a d y ;
595 goto StReadyFree ;
596 StReadyFree :
597 i f
598 : : f r o m P r o v i d e r ? r e s e r v e −> goto StReadyRese rved ;
599 : : f r o m P r o v i d e r ? t e r m i n a t e −> goto end ;
600 : : t o P r o v i d e r ! r e s o u r c e F a i l u r e −> goto S t F a i l u r e ;
601 : : t o P r o v i d e r ! shutdown −>
602 goto end ;
603 f i ;
604 StReadyRese rved :
605 i f
606 : : fromWLM? s t a r t J o b −> goto S t R e a d y S t a r t i n g ;
607 : : f r o m P r o v i d e r ? r e m o v e R e s e r v a t i o n −> goto S t T e r m i n a t e d
608 : : t o P r o v i d e r ! r e s o u r c e F a i l u r e −> goto S t F a i l u r e ;
609 : : f r o m P r o v i d e r ? a b o r t J o b −> goto StReadyFree ;
610 : : f r o m P r o v i d e r ? t e r m i n a t e −> goto end ;
611 f i ;
612 S t R e a d y S t a r t i n g :
613 i f
614 /∗ u s u a l l y , t h e i g o r w i l l a l s o send t h e s u c c e s s f u l s t a r t t o ∗ /
615 /∗ i t s wlm , b u t we don ’ t model t h i s . ∗ /
616 : : t o P r o v i d e r ! s t a r t J o b s u c c e s s −> goto StRunning ;
617 : : t o P r o v i d e r ! s t a r t J o b f a i l u r e −> goto StReadyFree ;
618 : : t o P r o v i d e r ! r e s o u r c e F a i l u r e −> goto S t F a i l u r e ;
619 f i ;
620 StRunning :
621 /∗ Here , t h e i m p l e m e n t a t i o n would s t a r t t h e j o b . ∗ /
622 /∗ t o P r o v i d e r ! r u n n i n g ; ∗ /
623 i f
624 : : t o P r o v i d e r ! t e r m i n a t e J o b s u c c e s s −> goto StReadyFree ;
625 : : t o P r o v i d e r ! t e r m i n a t e J o b f a i l u r e −> goto StReadyFree ;
626 : : t o P r o v i d e r ! r e s o u r c e F a i l u r e −> goto S t F a i l u r e ;
627 : : f r o m P r o v i d e r ? a b o r t J o b −> goto StReadyFree ;
628 : : f r o m P r o v i d e r ? t e r m i n a t e −> goto end ;
629 f i ;
630 S t T e r m i n a t e d :
631 i f
632 : : f r o m P r o v i d e r ? a b o r t J o b −> goto S t T e r m i n a t e d ;
633 /∗ : : f r o m P r o v i d e r ? f a i l e d −> go to S t T e r m i n a t e d ; ∗ /
634 : : f r o m P r o v i d e r ? t e r m i n a t e −> goto end ;
635 f i ;
636 S t F a i l u r e :
637 i f
638 : : f r o m P r o v i d e r ? t e r m i n a t e −> goto end ;
639 : : f r o m P r o v i d e r ? r e s e r v e −> goto S t F a i l u r e ;
640 : : f r o m P r o v i d e r ? r e m o v e R e s e r v a t i o n −> goto S t F a i l u r e ;
641 : : f r o m P r o v i d e r ? a b o r t J o b −> goto S t F a i l u r e ;
642 f i ;
643 end :

644 sk ip ;
645 }
646

647 i n i t {
648 /∗ S e t two c h a n n e l s f o r t h e b r o k e r − c l i e n t c o n n e c t i o n ∗ /
649 chan c2b = [c h a n S i z e] of {mtype } ;
650 chan b2c = [c h a n S i z e] of {mtype } ;
651

652 /∗ s t a r t u p ∗ /
653 atomic {
654 run wlm (c2b , b2c) ;
655 /∗ S t a r t t h e Broker ∗ /
656 run b r o k e r (b2c , c2b) ;
657 /∗ S t a r t t h e P r o v i d e r s ∗ /
658 byte j =0 ;
659 do
660 : : (j<N) −> run p r o v i d e r (j) ; run i g o r (j) ; j = j +1 ;
661 : : e l s e −> break ;
662 od ;
663 j =0 ;
664 }
665

666 i f
667 : : (w a i t == N+2) −> /∗ We have reached t h e end o f a l l p r o c e s s e s ∗ /
668 /∗ 1 . We have t h e same outcome ∗ /
669 a s s e r t (WLMOutcome == BrokerOutcome) ;
670 i f
671 : : (BrokerOutcome != BookingRejec tedOutcome) −>
672 a s s e r t (BrokerOutcome == Prov ide rOutcome) ;
673 : : e l s e −> a s s e r t (1 = = 1) ;
674 f i ;
675 /∗ 2 . We have o n l y s p e c i f i e d outcomes ∗ /
676 a s s e r t (0 <= WLMOutcome <= 5) ;
677 a s s e r t (0 <= BrokerOutcome <= 5) ;
678 a s s e r t (0 <= Prov ide rOutcome <= 5) ;
679 f i
680 }

APPENDIX B
MODELLING A LTL CLAIM

Here, we demonstrate how SPIN checks whether an LTL formula holds for the given model. We want to check that the
provider eventually reaches the same outcome as the broker. There is one exception to this: If the job was not scheduled, they
may have different outcomes.

The corresponding LTL formula is:

� ((¬BR) → ♦ (P = B)))

The corresponding automaton is shown in the listing below. It has been created with the LTL property manager of XSPIN,
a graphical frontend to SPIN.

First, we need to define the predicates used in the LTL formula. ¬BR simply compares the brokers outcome variable with
the constant value BookingRejectedOutcome. A second predicate checks whether the provider’s outcome value equals
the broker’s. The LTL formula can now refer to these predicates.

The LTL formula is negated and converted to the Buechli automaton below. The property holds if the combined execution
of the Calana model and the automaton produce the automaton not to enter any acceptance cycle [6]. The acceptance cycle
starts with the label accept_S4 in the generated code below. It is straightforward to create other LTL claims. SPIN can be
instructed to compose the model with an automaton as below and report any acceptance cycles, which means that the property
is violated.

1 # d e f i n e n o t B o o k i n g R e j e c t e d (BrokerOutcome != BookingRejec tedOutcome)
2 # d e f i n e p r o v i d e r E q B r o k e r (BrokerOutcome == Prov ide rOutcome)
3

4 /∗
5 ∗ Formula As Typed : [] ((n o t B o o k i n g R e j e c t e d) −> (<> (p r o v i d e r E q B r o k e r)))
6 ∗ The Never Claim Below Corresponds
7 ∗ To The Negated Formula ! ([] ((n o t B o o k i n g R e j e c t e d) −> (<> (p r o v i d e r E q B r o k e r))))
8 ∗ (f o r m a l i z i n g v i o l a t i o n s o f t h e o r i g i n a l)
9 ∗ /

10

11 never { /∗ ! ([] ((n o t B o o k i n g R e j e c t e d) −> (<> (p r o v i d e r E q B r o k e r)))) ∗ /
12 T 0 i n i t :
13 i f
14 : : (! ((p r o v i d e r E q B r o k e r)) && (n o t B o o k i n g R e j e c t e d)) −> goto a c c e p t S 4
15 : : (1) −> goto T 0 i n i t
16 f i ;
17 a c c e p t S 4 :
18 i f
19 : : (! ((p r o v i d e r E q B r o k e r))) −> goto a c c e p t S 4
20 f i ;
21 }

