
Agent-based Grid Scheduling with Calana

Mathias Dalheimer1, Franz-Josef Pfreundt1, and Peter Merz2

1 Fraunhofer Institut für Techno-und Wirtschaftsmathematik, Kaiserslautern, Germany
{dalheimer|pfreundt}@itwm.fhg.de

2 Department of Computer Science, University Kaiserslautern, Germany
peter.merz@ieee.org

Abstract. Grid resource allocation is a complex task that is usually solved
by systems relying on a centralized information system. In order to create
a lightweight scheduling system, we investigated the potential of auctions
for resource allocation. Each resource provider runs an agent bidding on the
execution of software with respect to local restrictions. This way, the infor-
mation system becomes obsolete. In addition, each provider can implement
different bidding strategies in order to reflect his preferences.

1 Introduction

Grid Computing as a way of virtualizing computational resources is becoming more
relevant in research and industry [1]. It can be foreseen that grid computing will
become important in a commercial scenario: service providers will sell computational
power and storage. Users will buy the required amount of processor cycles and disk
capacity on a per-use basis.

In the Fraunhofer Resource Grid (http://www.fhrg.fhg.de), we have a strong
bias towards commercial grid applications. Our goal is to provide users from both
industry and research with a stable, general purpose grid infrastructure. As a part
of this effort, we developed a prototype of Calana, an agent-based grid scheduler.

The paper is organized as follows: section 2 provides an overview of the related
work. In section 3, we introduce the architecture and design principles of Calana.
Section 4 discusses the results from experiments which have been done to evaluate
the system. Section 5 concludes with discussing the advantages of the architecture.

2 Related Work

The problem of grid scheduling is often referred to as resource management. In
addition to the five challenges of resource management [2], another challenge arises
from the different stakeholder’s objectives: a grid user wants to calculate fast and
cheap, but a resource provider’s interest is to earn money or utilize the unused
computing power of his own resources [3][4].

Currently, many projects include the development of a grid scheduler. Globus
Toolkit 4.0 integrates the Community Scheduler Framework (CSF) created by Plat-
form Computing [5]. Other schedulers include Condor [6] and Gridbus [7], which
is the successor of Nimrod-G [8]. However, the projects mentioned do not tackle
two very important issues: Currently, resource information is pushed periodically in
information systems like the Globus Meta Directory Service [9]. During scheduling,
potentially outdated information is used by the scheduler. Furthermore, stakehold-
ers are not able to express complex preferences and adjust their strategies quickly,
which is a strong prerequisite in order to establish a computational economy [10].
In real economies, these problems are solved by the established market structures
[11].

Ernemann and Yahyapour describe an architecture based on economic principles
in order to solve the problem of different stakeholders’ objectives [12]. They use
objective functions in order to find an equilibrium of interests. Although it should
be possible to implement complex strategies within this system in general, they do
not discuss it. Furthermore, this system allows various forms of collusion which may
not be tolerated.

Various authors have discussed the use of auctions for resource allocation prob-
lems [13][11][12]. Although Wolski and colleagues [14] prefer commodities markets
over auctions, the common understanding of most authors is that auctions are ca-
pable of solving a multicriteria resource allocation problem. The setup of Wolski
et al. is not applicable to this work: They separated processor and disk allocation,
reducing the auction’s reliability to allocate all needed resources.

Taking the stakeholder’s objective problem into account, we believe that eco-
nomic scheduling provides a suitable solution to the grid scheduling problem. As
we show in the remainder of the paper, we can incorporate different preference
structures and eliminate the need for a centralized information system for dynamic
information.

3 The Architecture of Calana

The design goal of Calana is to provide a lightweight and flexible scheduling system.
Basically, the architecture consists of two software components: The broker and the
agent. Each resource runs a small software agent. The agent registers itself to the
broker. When a job needs to be scheduled, the broker uses an auction to determine
which resource is available. The registered agents receive a request to bid on the
application execution. They need to check the feasibility of the request:

1. The auction announcement includes a link to the software’s description. The
agent may now compare the application’s prerequisites with its resources spec-
ification. If all prerequisites are fulfilled, the job can be further considered by
the agent.

2. Then, the agent checks the local resource usage directly by trying to get an
advance reservation for the job. The local resource system usually optimizes
the reservation details, e.g. by using a backfilling algorithm [15]. The result are
fixed start- and end-times for the job.

3. The reservation can be used to create a bid in the auction. The process of bid
creation is influenced by the provider’s strategy.

After the auction ends, the broker determines which bid fulfills the user’s require-
ments best. Each resource provider can implement own agents, enabling them to
specify all kinds of strategy and integrate various local resources.

In the following sections, we will describe the scheduling process in detail.

3.1 Using Auctions for Resource Allocation

Auctions can be classified as multilateral negotiations [16]. An auction is always
based on a well-defined scheme: During the bidding phase, all bidders submit bids
to the auctioneer. During the transaction phase, the auctioneer uses the scoring
rule to evaluate all bids and select the best. This makes the implementation of a
software system for auctions easy [11].

There are many different auction types. Each one has certain rules for both
bidding and transaction phase and a certain impact on the fairness of the market.
For the prototype implementation, we use a first-price sealed-bid auction [17]: the
bids are not visible to other bidders. The best bid wins the auction, and the price

of the auction is also determined by the best bid. Another possible auction is the
vickrey auction which is known to deliver pareto-optimal allocations as well as it
prevents some forms of collusion [17][16][18].

In order to consider all stakeholder’s preferences, resource selection must im-
plement a multi-criteria optimization as defined by Kurowski et al [19]. We use
multicriteria bids: a bid may contain multiple values [16]. In general, all auctions
can be adopted to work with multicriteria bids: An announcement of valid proper-
ties of a bid has to be made. For the comparison of bids, the auctioneer can use a
scoring rule that delivers a relative value of a bid. The bid with best relative value
will win the auction.

A serious problem of auctions is collusion: a bidder may try to break auction
rules in order to increase his benefit. Although a bidder may only submit bids for
himself, there are ways to influence the market [18]: Pools of bidders may influence
auctions, the auctioneer may trade with information in sealed-bid auctions and
offerors can use phantom bids to increase the market’s competition. Creating fair
auctions is a complex task. Basically, the use of sealed bid auctions in combination
with a trusted auctioneer seems to be reasonable [16]. Further research concerning
auction design for computational markets is needed.

3.2 The Calana Prototype

An overview is given in figure 1. The broker works as an auctioneer for scheduling
requests, while the agent submits bids for the auctions. The agents are located at
the provider’s sites, while the broker must be hosted by a trusted third party. The
user accesses the broker not directly but by using a portal or a workflow tool, e.g.
the GridJobHandler [20].

For each job, the user’s tool calls the broker to retrieve a schedule. Each call
consists of a description of the software, possibly the size of the datasets and some
weights for the scoring function in order to reflect the user’s preferences. One may
also consider scoring functions completely specified by the user.

The broker receives the request and creates a new auction. A call for bids is sent
to each registered agent. This call contains a software description, provided by the
manufacturer of the software, and the auction deadline. The software description
contains a description of the runtime behaviour, along with other properties such
as the number of cluster nodes the software should run on. The agent can use
this information to predict the overall runtime of the application. Of course, this
prediction is not reliable, only for certain types of software the runtime may be
calculated, e.g. depending on the input data [21][22]. As a fallback, user-specified
walltimes can be used.

Based on this information, the agent composes a bid. This can be influenced by
the local bidding strategy: Jobs may be cheaper on weekends or promotions during
holidays may be considered. A bid consists of the estimated job finish time tf and a
monetary price p for the execution. When a bid is submitted, an advance reservation
for the software must be made in order to be able to satisfy an auction won.

When the auction deadline has passed, the broker judges all bids by applying a
scoring rule. This enables the broker to consider user preferences modeled as weights
for the scoring rule. For the value v of a given bid, the broker calculates the scoring
rule with the parameters given by the users. For example, the value of the bid i,
0 ≤ i ≤ n, may be calculated as follows:

vi = f(pi, t
f
i) = g · pi

pmax
+ (1− g) · tfi

tfmax

(1)

with a weight g for the price preference, 0 ≤ g ≤ 1 ∈ R, maximum finish time
tfmax = max{tfi|0 ≤ i ≤ n} and maximum price pmax = max{pi|0 ≤ i ≤ n}. The

Fig. 1. Overview of the architecture: the user workflow tool uses the broker component to
create a valid schedule (1). Resource providers use an agent in order to connect their local
scheduling systems to the architecture (3). The broker and agents interact to create the
schedules (2).

best bid b is the bid with the minimal value:

b = min{vi|0 ≤ i ≤ n} (2)

This way, a user has the opportunity to express even fuzzy personal preferences, like
“I want my results fast, but I don’t want to pay that much.” In this example, one
may choose g = 0.2. The scoring rule can be generalized in order to consider more
variables or to respect user thresholds like ”I prefer fast execution, but it should
not cost more than 11.2e”.

Finally, after a scheduling decision has been made, the broker notifies the user’s
tool, which may use the advance reservation to execute the job. In parallel, all
agents that haven’t succeeded will be notified to cancel the advance reservation.
If a notification is not received, the agents drop reservation after a timeout. Since
all transactions are made by a central broker, an accounting service may also be
provided.

The providers register themselves at the broker. There must be an announcement
of available brokers, but since their number is comparatively low, this should not
have negative effects. The auction announcement is broadcasted to all registered
agents. Only the interested agents answer, and only these will receive a message
about the auction result. Agents may also choose to resend a bid, e.g. if they didn’t
win an auction at another broker. When a sealed auction is used, the current bid
must not be broadcasted to all agents. If n agents are attached, we expect the
number of messages to be propotional to n. Compared to a system with a central
information system, more messages are needed during scheduling.

But when comparing to other schedulers, the periodical messages to update the
dynamic information in centralized information system are often not taken into

account. In this architecture, no centralized dynamic information is needed: since
the agents reside beneath the resources, they can directly access the batch queues,
getting up-to-date information.

The amount of messages can be reduced further by the introduction of a tree-
like hub structure: The broker announces all auctions to its hub peers, which have
the resources attached. They propagate the auction request to the resources and
collect the bids. Finally, results are handed back to the broker. This infrastructure
can also be used to reduce information: for example, a hub peer might choose only
to propagate the pareto-dominant bids and drop the rest. This way, the messages of
the broker are proportional to log n. Note that all hubs must belong to a trustworthy
institution in order to avoid collusion.

4 Experiments

Unfortunately, there is no common benchmark for grid schedulers so far. Lacking
a common model for workload creation [23], we used parallel workload sets from
the Cornell Theory Center (CTC)[24] and created our own job sets for non-parallel
workloads. A model for grid resources has been proposed by Kee and colleagues [25].
In future work, we will use this information to define and run further experiments.
In addition to our prototype, we developed an event-based simulation with Gridsim
[26] which we use to run most experiments. We denote if we used the prototype.
We use two measurements for the evaluation: The total completion time and the

(a) Total completion time comparison (b) Scalability for nonparallel jobs

Fig. 2. The left figure shows a comparison of the total completion time for the CTC
scheduler and Calana, on the right side results of our non-parallel workload test are shown.

overall price. The total completion time C provides the time needed to run n jobs
in total, including queuetime and runtime of each individual job:

C =
n∑

i=1

(queuetimei + runtimei) (3)

The overall price is the sum of the prices of all single software executions.

4.1 Comparison to other schedulers

The lack of a common benchmark makes the comparison of schedulers difficult.
Since the CTC workload is freely available and delivers the decisions of a centralized
scheduler based on backfilling, we can directly compare our parallel simulation runs,

see figure 2a: We compared the allocation of the CTC scheduler with three runs of
the prototype. In the first run, one agent was responsible for a cluster as big as the
420 node CTC cluster. In the second and third run, we added agents that managed
one (114 node) resp. two smaller (56 node) clusters in addition to a cluster with 306
nodes managed by the first agent. This is necessary because the biggest job in the
CTC’s workload needs 306 nodes. As the figure shows, the runtimes are almost the
same, independent of the number of attached agents. Therefore, we do not expect
centralized scheduling systems to perform better in general.

4.2 Scalability of the architecture

Our prototype was able to handle 500 concurrent agents, bidding on parallel jobs.
Since the EGEE project has about 150 sites, we would be able to schedule more
than three times the EGEE project with a single broker. Lacking a model to create
appropriate workload, we used the CTC workload as input. Of course, the workload
is too low to utilize this number of sites, so the queuetime was zero for all runs. For
the following experiments, we used a synthetic workload which contains nonparallel
jobs. We simulated successively 1 to 20 agents, see figure 2b. Since each agent man-
ages a non-parallel resource, the total completion time for the workload decreases
continuously until all jobs can be processed instantly.

1.2e+10

1.4e+10

1.6e+10

1.8e+10

2e+10

2.2e+10

2.4e+10

2.6e+10

 0 0.2 0.4 0.6 0.8 1
4.5e+07

5e+07

5.5e+07

6e+07

6.5e+07

7e+07

7.5e+07

M
ak

es
pa

n
(s

)

M
on

ey
 (

U
ni

ts
)

pricepreference

makespan
money

0

5e+06

1e+07

1.5e+07

2e+07

2.5e+07

3e+07

3.5e+07

 0 0.2 0.4 0.6 0.8 1

M
on

ey
 (

U
ni

ts
)

pricepreference

agent1
agent2
agent3

(a) Influence of user preferences (b) Influence of exponential smoothing

Fig. 3. Influence of user preferences and bidding strategies on the allocation. When the
price component of the bids become more important, the behaviour of Calana changes.

4.3 Influence of user preferences and provider strategies

In our basic model, we assume each job has a fixed setup price ps and a constant
price pt for each CPU-second. The price p of a computation running f t seconds can
be calculated as p = ps + f t · pt. A provider may now choose different values of ps

and pt. At the same time, the user wants to specify his own preferences. In order
to show Calana’s ability to deal with this, we ran an experiment with two agents.

The first agent uses a setup price ps
1 which is half of the setup price of the second

agent (2ps
1 = ps

2), but the computation cost is more expensive: the price per CPU-
second pt

1 is twice times of the second (pt
1 = 2pt

2). As figure 3a shows, the overall
price drops while the total completion time increases when the user’s preference
changes to cheaper execution. When the price preference reaches 70 % (g ≥ 0.7),
the values doesn’t change any more: The price dominates the broker’s decisions.

Of course, this experiment raises the question how a resource provider can adjust
its agent to the market. We used the settings above to evaluate a third agent that

generates pt
3 based on the last auctions: It uses exponential smoothing (α = 0.15)

to wheight the last 10 winning bid’s amount p̂ and uses this value to create a bid:

pt
3 = α

10∑
i=0

(1− α)i · p̂i (4)

As shown in figure 3b, the third agent dominates the scenario completely if the
price influence becomes important.

5 Summary

In this paper, we presented an auction-based grid scheduler that is capable of taking
both user and resource provider preferences into account. No central information
system for dynamic data is necessary, providing a major advantage compared to
other schedulers. A provider may implement all kind of strategies and change them
frequently. By creating a bid, it is possible to reflect local restrictions. User prefer-
ences can be taken into account by using multicriteria bids.

The architecture is scalable, portable and extensible. In general, the software can
be adopted to fit other environments. The architecture will be developed further
so that it will be usable with other grid setups. In future, the architecture will be
evaluated in a real industry setup and enhanced to include more market aspects. An
evaluation of different agent strategies will be made, along with a production-ready
implementation in the Fraunhofer Resource Grid.

Acknowledgement

The Competence Center High Performance Computing at the Fraunhofer ITWM
(http://www.itwm.fhg.de) is supporting this work.

References

1. Foster, I., Kesselman, C.: Computational Grids. In: The Grid: Blueprint for a Future
Computing Infrastructure. Morgan Kaufmann Publishers (1998)

2. Czajkowski, K., Foster, I., Karonis, N., Kesselman, C., Martin, S., Smith, W., Tuecke,
S.: A resource management architecture for metacomputing systems. In: Job Schedul-
ing Strategies for Parallel Processing. Volume 1459 of LNCS., Springer (1998) 62–68

3. Moreno, R., Alonso-Conde, A.B.: Job scheduling and resource management techniques
in economic grid environments. In et al., F.F.R., ed.: Across Grids 2003. Volume 2970
of LNCS., Springer (2004) 25–32

4. Ernemann, C., Hamscher, V., Yahyapour, R.: Economic scheduling in grid computing.
In: Job Scheduling Strategies for Parallel Processing. Volume 2537 of LNCS., Springer
(2002) 128–152

5. Smith, C.: Open source metascheduling for virtual organizations with the community
scheduler framework (csf). Technical report, Platform Computing, Inc. (2003)

6. Roy, A., Livny, M.: Condor and preemptive resume scheduling. In Nabrzyski, J.,
Schopf, J.M., Weglarz, J., eds.: Grid Resource Management. Kluwer Academic Pub-
lishers (2003)

7. Venugopal, S., Buyya, R., Winton, L.: A grid service broker for scheduling distributed
data-oriented applications on global grids. Technical Report GRIDS-TR-2004-1, Grid
Computing and Distributed Systems Laboratory, University of Melbourne, Australia
(2004)

8. Abramson, D., Buyya, R., Giddy, J.: A computational economy for grid computing and
its implementation in the Nimrod-G resource broker. Future Generation Computer
Systems 18 (2002) 1061–1074

9. Czajkowski, K., Fitzgerald, S., Foster, I., Kesselman, C.: Grid information services
for distributed resource sharing. In: Proceedings of the Tenth IEEE International
Symposium on High-Performance Distributed Computing (HPDC-10), IEEE Press
(2001)

10. Kenyon, C., Cheliotis, G.: Grid resource commercialization. In Nabrzyski, J., Schopf,
J.M., eds.: Grid Resource Management. Kluwer Academic Publishers (2003)

11. Buyya, R., Abramson, D., Giddy, J., Stockinger, H.: Economic models for resource
management and scheduling in grid computing. The Journal of Concurrency and
Computation: Practice and Experience (CCPE) 14 (2002) 1507–1542

12. Ernemann, C., Yahyapour, R.: Applying economic scheduling methods to grid envi-
ronments. In Nabrzyski, J., Schopf, J.M., eds.: Grid Resource Management. Kluwer
Academic Publishers (2003)

13. Wellman, M.P., Walsh, W.E., Wurmann, P.R., MacKie-Mason, J.K.: Auction proto-
cols for decentralized scheduling. In: 18th International Conference on Distributed
Computing Systems, Amsterdam. (1999) Revised and extended version of “Some eco-
nomics of market-based distributed scheduling”.

14. Wolski, R., Plank, J.S., Brevik, J., Bryan, T.: Analyzing market-based resource alloca-
tion strategies for the computational grid. International Journal of High Performance
Computing Applications 15 (2001) 258–281

15. Lifka, D.A.: The ANL/IBM SP scheduling system. In Feitelson, D.G., Rudolph, L.,
eds.: Job Scheduling Strategies for Parallel Processing. Number 949 in LNCS, Springer
(1995) 295–303

16. Peters, R.: Elektronische Märkte - Spieltheoretische Konzeption und agentenorien-
tierte Realisierung. Physica Verlag (2002)

17. Schimmel, K., Zelewski, S.: Untersuchung alternativer auktionsformen hinsichtlich
ihrer eignung zur koordination verteilter agenten auf elektronischen märkten. Tech-
nical Report 19, Institut für Produktionswirtschaft und industrielle Information-
swirtschaft, Universität Leipzig (1996)

18. Corsten, Hans; Gössinger, R.: Auktionen zur marktlichen koordination in un-
ternehmungsnetzwerken. In Corsten, H., ed.: Unternehmungsnetzwerke. Oldenbourg
(2001)

19. Kurowski, K., Nabryski, J., Oleksiak, A., Weglarz, J.: Multicriteria aspects of grid re-
source management. In Nabrzyski, J., Schopf, J.M., eds.: Grid Resource Management.
Kluwer Academic Publishers (2003)

20. Hoheisel, A.: User tools and languages for graph-based grid workflows, 2004. In:
Grid Workflow 2004 Special Issue of Concurrency and Computation: Practice and
Experience. (2004)

21. Merten, D.: Integrated performance analysis of distributed computer systems. Work-
shop on Performance Characterization, Modeling and Benchmarking for Existing and
Emerging HPC Systems (2004)

22. Russell, M., Allen, G., Goodale, T., Nabrzyski, J., Seidel, E.: Application requirements
for resource brokering in a grid environment. In Nabrzyski, J., Schopf, J.M., eds.: Grid
Resource Management. Kluwer Academic Publishers (2003)

23. Chapin, S., Cirne, W., Feitelson, D., Jones, J., Leutenegger, S., Schwiegelshohn, U.,
Smith, W., Talby, D.: Benchmarks and standards for the evaluation of parallel job
schedulers. In Feitelson, D., Rudolph, L., eds.: Job Scheduling Strategies for Parallel
Processing. Volume 1659 of LNCS., Springer (1999) 66–89

24. Feitelson, D.: Parallel workloads archive (2005) http://www.cs.huji.ac.il/labs/

parallel/workload.
25. Kee, Y.S., Casanova, H., Chien, A.A.: Realistic modeling and synthesis of resources

for computational grids. In: Proceedings Supercomputing 2004, IEEE (2004)
26. Buyya, R., Murshed, M.: Gridsim: A toolkit for the modeling and simulation of

distributed resource management and scheduling for grid computing. The Journal of
Concurrency and Computation: Practice and Experience (CCPE) 14 (2002)

